
AD-AI04 679 AIR FORCE INST OF TECH WRIGHT-PATTERSON
AF OH F/6 9/2

FIDELITY OPTIMIZATION OF MICROPROCESSOR SYSTEM SIMULATIONS. (U)

MAR 81 E T LANDRUMUNCLASSIFIED AFIT-CI-S1-3T NL

I IEEEEEEEmhmhIE,'hEEIIEIIEIIII
EEEEEEEEEEIII
EEIIIEIIEEEEEE

StCtuHITY CL AtlIx ItATION OF T.I1S PAGE (WI.er list V
REPORT DOCUMENTATION PAGE IWI.AI) IN((I I'NSL

i REPORT NUB E H GOVT ACC ESSION NO. 3 RECI PI EN T'S rCA TAL OG NULMbE R

/'81-3T 7III A~~.j4 I ~ __-

I. TIT LE (end Su.btitle) 5 TYPE OF REPORT A PERIOD COVERED

" Fidelity Optimization of Microprocessor THESIS/DgW&YON/
System Simulations, ____________

6 PERFORMINGOIG. REPORT NUMBER

II 7. AUTHOR(a) 8. CONTRACT OR GRANT NUM8ER(oj

~~ /< Earnest Taylor Landrum, Jr,. j4 7 ,'-

s PEFONIN~I-IANIATIN NME PO GGRSS -. 10 PROGRAM ELEMENT PROJECT. TASKE

Qt AFIT STUDENT AT: Auburn University AE OKUI UBR

MC I I CONTROLLING OFFICE NAME ARD ADDRESS --. 12. REPORT L)ATE

AFIT/NR /7 Marc 1.981
WPAFB OHl 45433 I3. NUMaERi3T 'AGIES

___ 91
14 MONITORING AGENCY NAME 6ADDRESS(Il dIff-wat fomCuIIn Office) IS. SECURITY CLASS. (of this report)

UNCLASS

16. DISTRIBUTION STATEMENT (-I this Report) -r# : -

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITEO

I7. DISTRIBUTION STATEMENT (of the abstract entered int Block 20, If differeint fromt Report)

IS. SUPPLEMENTARY NOTES Cx

20. ABSTRACT (Coninue. or reverse side it rnecessary anid Identify by block number)

ATTACHED

8j7 16 025
D IA 7 1473 EDITION 0" 1NOy65 15OBSOLETE UNCLASS(

!,C'-, S JRITO A' ;, CA
T

IO4 OF TNI SPA6E (1
41

_ pat. e

AFIT RESEARCH ASSESSMENT 81-3T

The purpose of this questionnaire is to ascertain the value and/or contribution ot research
accomplished by students or faculty of the Air Force Institute of Technnlogy (ATC). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AVB OH 45433

RESEARCH TITLE: Fidelity Optimization of Microprocessor System Simulations

AUTHOR: Earnest Taylor Landrum, Jr.

RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?

() a. YES () b. NO

2. Do you believe this research topic is significant enough that it would have been researched
(or contracted) by your organization or another agency if AFIT had not?

C) a. YES () b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your
agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

() a. MAN-YEARS () b. $

4. Often it is not possible to attach equivalent dollar values to research, althouqh the
results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what is your estimate of its significance?

a. HIGHLY C) b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

N-GRADE -POSI~fT-ION

ORGANIZATION LOT-..

STATEMENT_ sj:

IA-I

A

FOLD DOWN ON OUTSIDE -SEAL WITH TAPE

AFiT/NR I IIINO POSTAGE
WIGHT-PATTERSON AFB OH 45433 I IIINECESSARY

IF MAILED
OFFICIAL BUSINESS IN THE

PNALTY FOR PRIVATE USE. 5300 UNITED STATES

BUSINESS REPLY MAIL_ _ _ _ _

FIRST CLASS PERMIT NO. 73238 WASH4INGTON D.C.

POSTAGE WILL BE PAID BY ADDRESSEE

AFIT/ DAA ______

Wright-Patterson AFB 01145433 _ _____

FOLD IN

FIDELI[TY OPTIMIZAL' ON OF MICROPROCESSOR

SYSTEM SIHULATIONS

Earnest Taylor Landrum, Jr.

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Deglre of

Master of Science

Auburn, AlIabama

MIarch 19, 1981

FIDELITY OPTIMIZATION OF MICROPROCESSOR

SYSTEM SIMULATIONS

Earnest Taylor Landrum, Jr.

Certificate of Approval:

V. P. Nelson, Assistant Professor J. D. Irwin, Professor

Chairman Flectrical En;ineering

Electrical Engineering

J. S. Boland, Professor Paul F. Parks, Dean

Electrical Engineering Graduate School

FIDELITY OPTIMIZATION OF MICROPROCESSOR

SYSTEM SIMULATIONS

Earnest Taylor Landrum, Jr.

Permission is herewith granted to Auburn University to make copies of
this thesis at its discretion, upon the request of individuals or
institutions and at their expense. The author reserves all publica-
tions rights.

Signature of Author

Date

Copy sent
to:

Name Date

iii

* -- -----------. * --.----. -- --. * -if

VITA

Earnest Taylor Landrum, Jr., son of Earnest T. and Lois (Dean)

Landrum, was born July 24, 1948, in San Antonio, Texas. He attended

Greenville County, South Carolina, public schools and graduated

from Greenville Senior High School, Greenville, South Carolina, in

1966. In September 1966 he entered the Georgia Institute of Tech-

nology and received the degree of Bachelor of Science (Physics) in

June 1970. He then entered the United States Air Force as a second

lieutenant. He entered graduate studies at Auburn University in June

1977. He married Kathleen, daughter of Edwin J. and Ethel (Hoeck)

Clisham in June 1977. They have one daughter, Jessica Dean.

iv

THESIS ABSTRAUCT

FIDELITY OPT[MIZATION OF MICROPROCESSOR

SYSTEM SIMULATIONS

Earnest Taylor Landrum, Jr.

Master of Science, March 19, 1981
(B.S., Georgia Institute of Technology, 1970)

117 Typed Pages

Directed by Victor P. Nelson

The development of a microprocessor system simulation that would

accurately portray the operation of the system at a very fine level

of detail was studied. This optimization in the area of fidelity was

broken into three tasks. A preprocessor program was written to im-

prove the operator interface to an existing simulation driver program.

An existing microprocessor simulation, designed to run under the simu-

lation driver program, was extensively modified to reflect actual ma-

chine level operations rather than abstract level functions. A simu-

lation of a programmable parallel interface was developed and mated

to the microprocessor simulation. Examples and possibilities for sys-

tem level simulation are discussed and analvzed.,

v

TA3LE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES vii

I. INTRODUCTION I

II. PREPROCESSOR DEVELOPMENTS 4

III. FIDELITY ORGANIZATION OF A SIMULATION 11

Microprocessor Simulatiun

Control Functions
CPU Support Group

I/O Support

IV. EXPERIMENTAL RESULTS 24

V. CONCLUSIONS 31

REFERENCES 35

APPENDICES 36

CDL Simulator User's Manual

Simulation of Intel 8080 Microprocessor

Preprocessor FORTRAN Routines

Preprocessor Assembly Language Routines

vi

LIST OF TABLES

1. Preprocessor Routine List................... 8

2. Prominent Preprocessor Features........ 9

vii

LIST OF FIGURES

1.Preprocessor Program Structure. 6

2. HLT Command Routine..........................14

3. Immediate Instruction Handler Routine. 16

4. CPU Group...............................18

5. Simulated Intel 8255 Configuration................21

6. Test Program Listings

7. Simulator Output, Page 1. 26

8. Simulator Output, Page 2. 27

9. Timing Analysis.................... 2

viii

I. INTRODUCTION

The work to be described in this thesis focuses on simulation of

microprocessor-based systems, pursuing three related objectives.

First, simulation routines must have an efficient human interface to

allow effective interaction with the user and efficient use of the

simulation capabilities. Secondly, the simulation program of the tar-

get machine should be a highly faithful model of that machine, to

allow use of the simulation results with a minimum of corrections for

simulator-based peculiarities. Finally, the target machine must be

complete enough to accurately portray system operation, including in-

put/output functions.

Thus, there were three logically connected tasks to be done. The

first task was to develop a preprocessor program to increase the util-

ity and ease of operation of an existing simulator program, based on a

hardware description language. The second task was to develop a mi-

croprocessor simulation, avoiding the abstract level in favor of one

more in line with the actual operation of the target machine. The

final task was to develop the capability to simulate a complete system

with input/output functions.

The simulator program used was the Computer Design Language Simu-

lator - USF Version 2, as run on the computer system of Auburn Univer-

sity. This simulator program is based on Computer Design Language

(CDL), a hardware description language developed by Dr. Yoahan Chu of

I

2

the University of Maryland (1,2). Using an algebraic structure, CDL

describes device operations at the register transfer level. The main

advantage of the language is this logical structure. Hardware devices

are called by commonly used names and register transfer operations are

easily understood. The simulator program retains this clear, logical

translation of a hardware system into CDL. However, there are two

disadvantages to using the program. Initial program and data load of

the target machine must be prepared in binary machine code, which can

be awkward. In addition, considerable amount of processing time is

necessary, due to the intensely iterative nature of the simulation

routine.

The preprocessor developed was designed to remedy one of these

drawbacks. The preprocessor allows the use of assembly language to

load the target machine's simulated program space. This human inter-

face frees the user to concentrate on the results of the simulation

rather than on the mechanics of achieving it. It also provides a sim-

ple set of format and semantic checks to be made on the program to be

assembled. The prime requirement was to make simulation easier to

achieve and correct, thus more responsive to the user.

A simulation of a microprocessor was available as A result of an

earlier study (3). However, many of the routines were written only to

provide a correct output, without regard to the mechanism used. The

simulation was extensively modified to more closely duplicate the ac-

tual operation of the target machine. The functions of the basic sup-

port chips were defined more explicitly. Using the improved simula-

3

tion as a basis, the functions of representative communications chips

were developed. The unique aspect of the resulting product was its

ability to model an integrated system, including input/output and in-

terrupt driven routines.

The body of this paper will further describe these three tasks.

The considerations and constraints used in the development of the pre-

processor are described first. The next section discusses both the

principles used to modify the Intel 8080 simulation for increased fi-

delity and those principles used to build a parallel communications

interface. The experimental results obtained from testing the system

are then presented. The final section contains the conclusions drawn

from the project and some suggested directions for further work in

this area.

"

II. PREPROCESSOR DEVELOPMENT

The CDL Simulator Program is designed for hardware simulation at

the register transfer level. At this level, a processor operates by

logically decoding comands and data presented in machine language.

CDL is particularly efficient in expressing the decoding and execution

processes. Although this feature offers great flexibility and detail

in design, it becomes a drawback when simulating the execution of trail

programs, due to the necessity of translating these programs into ma-

chine language. The preprocessor's major function is to translate pro-

grams written in the assembly language of the target machine into CDL-

compatible machine code and load them into the assigned memory space.

It operates as an assembler and loader, with appropriate support func-

tions such as symbol table generation. The output of the assembler

routine is presented in two forms for user convenience. The first ver-

sion is a line by line translation of the assembly code. The program

is displayed for analysis and correction of errors. The second version

is the CDL-compatible card image, displaying the machine code as it is

presented to the simulation program. This version is particularly

helpful in tracing the execution of the simulation.

The second design goal was to provide the translation process with

an adequate human interface. Careful design of the output. as dis-

cussed above, was a first step. Although the preprocessor was never

intended to be a complete software development tool, routines were in-

4

cluded to detect and flag the type of errors likely to 1).,:

executing trial programs on a simulated machine. !h, ies v, i: i,

syntax errors in the structure of the trial program and oding, .rrors

within the program itself. These routines are limited to those that

would be most useful.

An additional constraint was imposed on the preprocessor. To

be compatible with the existing CDL simulation program, it has to be

written in FORTRAN. FORTRAN, however, lacks the bit-level instruc-

tions necessary to deal with character data. Following the example

of the basic simulation program, the preprocessor implements several

required functions in IBM 370 assembly language subroutines. While

there is a bonus in increased execution speed, program linkage and

integration posed significant problems during development.

The choice of a target machine was also an important considera-

tion. Since the preprocessor works with assembly language, a target

machine had to be chosen in order to code the assembler. For maximum

utility, the preprocessor would have to work with a significant ma-

chine, one having widespread use and a need to be simulated. It would

also have to be one that had information on its internal operation

widely available. The choice for this work was the Intel 8080 micro-

processor.

The basic function of the preprocessor is that of a standard two

pass assembler and loader (4). While FORTRAN does not lend itself to

the writing of structured programs, an attempt was made to preserve

logical form in the program (Figure 1). The program has a central

FORTRAN driver routine, ASMINT, that performs initialization, selects

- J

MAIN
DRIVER
ROUTINE

PASONE PASpO CARD LOADER

I t
IIMAGES

UTILITIES [UTILITIES

Figure 1. Preprocessor Program Structure

7

the required language set, directs the passes of the assembler and

outputs the final code, both as hard copy and CDL compatible machine

code in the program memory space. These major functions are imple-

mented in FORTRAN subroutines, in turn supported as necessary by

IBM 370 assembly language subroutines (Table 1). Assembly language

is used in routines performing bit manipulation and in the routines

that are highly iterative. This structure supports the design objec-

tives of the preprocessor. As part of a time-consuming, intensely

iterative program, this segment has to be relatively fast to avoid

lengthening an already long program in execution. To conserve mem-

ory space and improve speed, it has to be relatively small. To im-

prove readability and encourage both use and future improvements, it

has to be relatively straightforward and simple. The overall design

strategy was to produce a limited implementation that stressed util-

ity over optimization. The prominent features of the preprocessor

are listed in Table 2. For a more complete description of the fea-

tures and options of the program, both the user's manual and program

listing are included in this work as appendices.

Integration of the preprocessor into the CDL simulation program

posed several problems. There was the language problem described

earlier with the mating of FORTRAN and IBM 370 assembly language. The

preprocessor also had to integrate with the CDL simulator in such a

way as to preserve the human interface and the logical continuity of

the main program. The design solution to this problem was to have the

preprocessor produce card images of the assembled machine code and

load them in accordance with the procedures for loading CDL simulator

Level Title Language Function

First ASMINT FORTRAN Assembler driver routine

Second PASONE FORTRAN Assembler first pass driver

PASTWO FORTRAN Assembler second pass driver

IMAGER FORTRAN Build card image format

Third Utilities Character manipulation and assembly

POPSUB FORTRAN Pseudo-op handling

LODASM Assembly Operation code table loader

LABLST Assembly Symbol table manager

PCODE Assembly Operation code table manager

STRING Assembly String decoder

OPERAN Assembly Operand numerical converter

VALRED Assembly Character numerical converter

Table 1. Preprocessor Routine List

9

Assembler options

Language

Symbol table listing

Location counter initialization

Data types

Numerical (decimal,hexadecimal, octal, binary)

Character strings

Expressions

Pseudo-ops

Assembler control (origin and end)

Data storage (byte, word, space, equality)

Input Assembly language program

Output

Assembled code listing

Loader compatible card images

Table 2. Prominent Preprocessor Features

10

memory space from cards. This approach maintained the continuity of

the CDL simulator and relieved the necessity of creating an alternate

method of introducing data into the assigned program memory space of

the simulator.

Even though a specific target machine was chosen, the prepro-

cessor was designed to permit extension into other languages to make

it more versatile. One of the initial operator specifications is

the language to be used by the assembler. This specification controls

the operation code set selected by the program. The pseudo operation

codes are indexed to allow multiple routines to be written to accom-

modate the different languages. Complete commonality, of course, is

impossible to achieve. The IBM 370 assembly language subroutines for

handling operands and addressing were specifically written to generate

Intel 8080 code. However, the modular structure of the preprocessor

would allow them to be replaced with subroutines suited for the de-

sired language.

III. FIDELITY OPTIMIZATION OF A SIMULATION

One of the most important attributes of a hardware simulator is

fidelity, the degree to which the simulation approximates reality.

Optimization of fidelity is the process of balancing the requirements

of broad principles of simulation, alternative methods of representa-

tion available in specific cases, and the priorities in performance

factors of the simulation as a whole. The desired outcome is a faith-

ful simulation that sacrifices as little as possible in attaining fi-

delity. This chapter describes the optimization process as applied

to the specific case of the Intel 8080 microprocessor within the

constraints of the CDL simulator.

Microprocessor Simulation

The operation of the Intel 8080 CPU can be analyzed down to a

fine level. An instruction cycle is the time it takes to fetch and

execute a single instruction. A machine cycle is generated each time

a memory or I/O access is made. This machine cycle can be subdivided

into separate states. In these individual states the actual micro-

operations of the CPU take place. Depending on the number and type

of microoperations executed within the machine cycle, there are three,

four, or five states in that cycle. The number of machine cycles re-

quired to complete an instruction depends upon the number of accesses

to memory or I/O. All of the 8080 instructions can be broken down in

11

"'

12

terms of machine cycles and states (5). This analysis forms the ba-

sis for the reality that must be simulated.

There are, however, areas of operation where certain assumptions

must be made to accommodate the hardware description language to the

processor. An outstanding example in this project is the use of flag

registers. The exact hardware logic used within the microprocessor

to initiate certain sequences is embedded in the control circuits de-

signed by the manufacturer. In order to allow the simulated micropro-

cessor to initiate these sequences, nonexistent hardware registers

have to be defined and assigned these functions. The prime example in

the instruction execution portion of the simulation is the register la-

beled MREF. This flag is set whenever an instruction is to be exe-

cuted using a memory reference as an assigned register operand. This

register may not exist in the actual hardware or may not be accessible

by the user. However, the simulator program can read the status of

this flag register and use the results to implement the sequence of

register transfers implemented in reality. The result is increased

fidelity of operation. Further use of this technique is made in the

implementation of control logic and will be discussed more fully in

a later section.

Other general concepts should be considered within an improved

simulation. The size of the simulation must be kept to a minimum

by avoiding duplicate procedures. Transfer of control between similar

operations is used where practical to achieve this goal. In a similar

vein, the concept of execution overlap requires special handling. The

8080 microprocessor uses an overlap of the final processes of certain

13

instructions and the fetch of the next instruction. This overlap

is used to increase the execution speed of the machine. CDL can

directly support concurrent processes only in certain cases. In-

clusion of the required extra routines to achieve the overlap is not

justified by the small return in authenticity. The originally over-

lapped processes are generally included in the last scheduled machine

cycle of the instruction in this simulation. The execution speed in-

crease is thus preserved by performing the processes outside of machine

time and the process is transparent, except at the precise moment of

the overlap. In a few cases the simulation could not perform the re-

quired functions in the required time, even though they were not over-

lapped. In such instances, the simulation was designed to come as

close as possible. These instances simply represent the limits of the

ability of the simulation, normally visible only at the subcycle level.

The process of bringing a simulation into strict compliance with

the actual operating principles is best done in several stages. A pro-

gram had been developed to simulate the Intel 8080 in a multiprocess-

ing environment (3). Therefore, the program was concerned primarily

with the results of program execution and the transfer of control ra-

ther than the strict simulation of a microprocessing system. It is

the basis for the instruction execution routine portion of the im-

proved simulation. Varying degrees of fidelity required varying

approaches. Some routines were completely rewritten. The HLT in-

struction is one example (Figure 2). The original sequence simply

disables the software mechanism used to translate clock pulses into

increasing machine cycle numbers. The revised sequence recognizes

14

ORIGINAL VERSION

Hit

/M(1)*T(4)*PCI)*READY*IR(7)'*IR(6)/ IF (OP1(3)*OP2(2)*OP3(6)) THEN
(READY=O, X=O, Y=l) ELSE (DO/SEVAL)

EXPANDED VERS ION

Hit

/M(1)*T(1)*P(1)*READY*IR(7)'*IR(6)/ IF (OPl(3)*0P2C2)*0P3(6)) THEN

(HLTA-=1, X=O, Y=2) ELSE (DO/SEVAL)

/M(2)*T(I)*PCL)*HLTA*READY/ SYNC-'I, MEMR=l

/M(2)*T(21*P(I)*HLTA/ WAIT--1, READY=O

Figure 2. TILT Command Routine

15

the halt, broadcasts it as the system status and enters a wait state

before disabling the software driver. The additional actions ake ne-

cessary to enable the processor to communicate with other parts of

a complete system.

Some instructions were changed to make more efficient use of the

memory and I/O routines developed in the control sections. The STAX

and LDAX execution routine was expanded to include the memory cycle

that occurs and makes the instruction continue into a second machine

cycle. Several instructions were thus modified to show single byte

I/0 transfer. Adding a cycle was generally done in a straightforward

manner. The single exception was the immediate instruction handler

(Figure 3). This routine recognizes the immediate instruction type

and fetches the required operand, using an added memory cycle. At

this point, the machine cycle numbers being carried by the simulation

are incorrect, even though the elapsed timing is very close to the

actual. However, the only alternative is to reproduce all of the af-

fected instruction execution routines, changing only the machine cy-

cle numbers, and then add them to the instruction set. The option that

was chosen was to maintain the smaller set of routines and accept the

single exception rather than to pay the simulation execution speed

penalty for redundant code. The simulation that results from the sum

of all these actions is a quite accurate model of the Intel 8080 in-

struction set. The next section will discuss the development of the

corresponding control logic.

16

ORIGINAL VERSION

Imnuediate Instruction Handler

/M(1)*TC4)*P(1)*READY*(IR(7) .ERA.IR(6))'*0P3(6)/ ADDBUFFER=PC, SYNC=1,
NWR=1, DBIN= 1, WAIT=1, READY=O

/M(1)*T(4)*P(1)*READY*(IR(7) .ERA.IR(6))'*0P3(6)/ PC=ADDBUFFER.COUNT.,
TEMP=DATABUFF, IR(6)=IR(6)', X=4

EXPANDED VERSION

Immediate Instruction Handler

/M(1)*TC4)*P(1)*READY*(IR(7) .ERA. IR(6)) '*0P3(6) / AILATCH=PC, MR1=1,
X=O, Y=2

/M(2)*TC2)*PC1)*READY*CR7).ERA.R6))'*0P3(6)/ MR11=0

/M(2)*T(3)*P(1)*READY*(IR(7).ERA.IR(6))'*0P3(6)/ PC=ALATCH,
TEMP=DATABUFF, IR(6)=IR(6)', X=4, Y=1

Figure 3. Immediate Instruction Handler Routine

17

Control Functions

The most important feature of faithful simulation of a micro-

processor system is control function implementation. While instruc-

tion set implementation is easily structured to conform to the ac-

tual CPU microoperation sequences, the control sequences are the key

to system level simulation. The control sequences must operate on

two levels. The first level is basic system control of the CPU and

associated support modules. Functions at this level include genera-

tion of CPU status information and basic memory access. The second

level of control functions are those necessary to drive unique system

modules. A specific example of this level is a communications mod-

ule used to communicate with a system peripheral.

CPU Support Group

The first level of control applies to the Intel 8080 CPU sup-

port group of modules (Figure 4). This group includes the 8080 8-bit

Microprocessor, the 8224 Clock Generator and Driver, and the 8228 Sys-

tem Controller and Bus Driver (6). The CPU itself has few jontrol

functions that are solely internal. One example is the clock cycle

incrementor function which translates the incoming clock pulses into

correct machine cycle and state signals. In the simulation this

mechanism also implements the asynchronous interrupt function. The

other control signals involve associated modules. The 8224 module

is actually not separately simulated. its clock functions are impli-

cit in the two phase clock defined in the hardware section. Its

only other function, converting the CPU synchronization signal to a

8080 CPU
GND
- 5V
+ 5V

+12V_

HOLD SSBSYTM DTBUOT

GENRAOR02 CNTOLLR NT

igre 4 Pru

19

status strobe signal, is simulated separately. The bulk of the con-

trol signals are concentratJ i.n the 8228. Its major function is

the broadcast and application of the system status. Triggered by

the status strobe, the simulation of the 8228 latches the status

word from the data bus and combines elements of that status word and

signals from the CPU in a gating array to generate memory and I/O

access signals.

The control function simulations are designed to operate similar

to nested subroutines. The normal memory routines activate selected

status word registers and the synchronization pulse. The synchroniza-

tion pulse triggers the status strobe, which loads the 8228 status

latch via the data bus. The gating array activates the primary se-

quences for memory access, listed in the simulation as utility rou-

tines, and deactivates the ready signal, stopping the software driven

cycle clock. After the services are performed, the ready signal is

reactivated to allow the clock cycle incrementor to continue. This

action simulates the access speed requirements. In this particular

application, the memory is assumed to be sufficiently fast that the

wait state need not be entered during the access. The machine cycle

and state numbers remain correct. However, since CDL requires that all

actions be driven by the system clock, the two clock cycles needed to

complete the access are counted. This fact affects any timing analy-

sis interpretation.

20

I/0 Support

The module simulated for the second layer of the system is the

Intel 8255 Programmable Peripheral Interface (7). This device uses

a system software generated control word to program the functional

characteristics of three eight bit ports to achieve a great number of

input and output configurations. The 8255 was chosen for its versa-

tility in controlling parallel communication. The programmable con-

figuration feature makes it a very flexible device. However, the CDL

simulator driver cannot support an ambiguously defined architecture.

The hardware definition section accepts only a single description of

each part of the system. Once the system design has been translated

by the simulation driver, that design remains fixed throughout the

simulation run, restricting the utility of the software driven func-

tional control. Complete flexibility could be obtained only by in-

cluding software instructions for every possible configuration, down

to a single bit level. These instructions would have to be evaluated

on each iteration of the simulator to co- truct the correct interface.

The software overhead penalty of processing all the instructions for

the other unused configurations was considered excessive. Therefore

a single representative configuration was chosen for simulation.

The chosen configuration contains one strobed bi-directional bus

and one input port, both with appropriate handshaking control lines

(Figure 5). Full interrupt and strobing capabilities are included in

the simulated logic. While software control of the configuration is

not possible, the set/reset function of the control lines is imple-

mented to allow control of the handshaking signals. Appropriate chip

L mllniI n r MOM="'

21

PORT A AO-A7 INPUT/OUTPUT

PORT C CO INTR-B

Cl IBF-B
C2 STB-B
C3 INTR-A
C4 STB-A

8255 C5 IBF-A
C6 ACK-A
C7 OBF-A

PORT B BO-B7 INPUT

Figure 5. Simulated Intel 8255 Configuration

22

select and port select decoding logic is also simulated. Two rou-

tines are added for simplicity in the simulation. The first is an

initialization routine which establishes the starting states of the

handshaking lines. This routine shortens the simulated program by

removing some housekeeping sequences. The second routine corresponds

to a switch setting that simulates input to the 8255 by transferring

memory data to the input port. This routine was necessary since there

is no way to input exterai data to a CDL simulated machine during a

simulation run. Switch statements, which are internal to the program,

can only simulate true external inputs. Any process must be self-

contained, as is this one.

Although parallel communication is a fairly straightforward re-

gister transfer operation, simulation of serial communication in CDL

is a more complex task. The actual hardware simulation is relatively

simple. Necessary components would include a holding register for the

byte being transferred, a pointer to the next bit to be handled, and

logic to implement the necessary line protocol. The complexity arises

in timing the transfer of the information. As noted before, the CDL

simulator does not handle concurrent tasking well. A central clock is

defined which provides all timing information. As in the CPU simula-

tion, a software counter mechanism would be necessary to define the

internal timing for the serial transfer. The hardware and software

constructs necessary for the serial interface would lengthen the sim-

ulation substantially. The simulation driver has a limit on the amount

of hardware that it can incorporate into the translated architecture.

There is no limit imposed on the software, but due to the sequential,

23

iterative nature of the driver, a penalty in execution speed is paid

for each statement. These limitations did pot favor an additional

interface.

A second reason for not implementing the serial interface was

evident from the nature of its operation. For low speed applications,

at 300 bits per second, the software timing counter would need a

maximum count of 6,600 central clock cycles to process a single bit.

High speed applications, typically 2400 bits per second, would still

require around 830 cycles per bit. Based on simulation runs made in

this project, such a simulation would require in excess of ten minutes

of CPU time for that single bit transfer at 2400 bits per second, due

to the granularity of the time base. The time could be reduced by

simulating the serial interface separately from the rest of the sys-

tem. Accomplishing this simulation would require that the hardware

design described earlier and the appropriate logic functions for that

design be substituted for the sections relating to the 8255 module.

This would allow serial communication simulation, but not parallel

communication simulation. If the two were to be simulated together,

one way to make the effort feasible in terms of required CPU time

would be to employ a separate clock with an artificially compressed

time base in the serial communication simulation and manually correct

the timing later. For this particular project, serial communication

simulation did not appear to be a subject to pursue.

IV. EXPERIMENTAL RESULTS

The first proof required of any computer program is whether or

not it indeed does perform its intended functions. Demonstrating

this fact for the preprocessor developed for this thesis actually in-

volves two factors. The preprocessor must perform the functions of

an assembler and initiate the simulation. While doing this, it must

also demonstrate the fidelity for which it was optimized.

The initial pages of output from a run of the program are pre-

sented in Figures 6, 7, and 8. The symbol table and the assembled

listing of the program to be simulated are presented in Figure 6. The

loadable version of the program, with associated location counter val-

ues, is shown below the listing. This simple program utilizes an in-

terrupt driven routine, triggered by the 8255 chip, to retrieve and

store an externally-input character. The main routine uses the con-

trol word function and the output function of the 8255, as well as pro-

viding a main processing stream to be interrupted.

Figures 7 and 8 are the initial sections of the output from the

simulation, triggered by the preprocessor after it has loaded the as-

sembled program into the simulated memory. The individual entries give

the hexadecimal values of selected registers during each clock cycle.

The changes in these registers, established in the hardware definition

section of the simulator program, trace the execution of the program.

The output presented illustrates the type of information collected.

24

25

END OP TRANSLATION, BEGIN SIMULATION

IOT LABELE I. .VA, OAT ABUFAAODDBUFE. I MEN,INTY

SIRPCjiHMP.STAv.CWOROCPO TAP ft@RTt. 1, N.INTR

ASM 6060 MN

ASSEMBLY BEGINS HERE

ISYMO TABLE

EJP VALUE 0100
luP VALUE 0IOS

PASS Two

.C. CODE PROGRAM STATEMENTS

0000 00 Cl ON OCI00" ISTOREO DATA

* INTERRUPT HANDLER ROUTINE
0036 INPUT: V A.06 KIL[L 10fTR SIGNAL
003A ON U

aV3 0gM SILL aaFA

0040 1 RN0IETRIEVE INPUT CHARACTI
0 04 0 02 7 TA 020101 ISTORE IT
804, F RE ENABLE INTERRUPT046 C RIT fR TURN

oj1 09 9
STU I A909 ilIl

lo0g ~a 02 O TT LA
3
20 LOAD CHARACTER

01 IS 0A * U IOUTPUT TO PORT A

0208 Cz 00 IF :oCZH iSTORED INFO

Sk630 IM O ASSEMBLER ROUTINE *.

.10 1OF DhTA8 ISM01PUT

Figure 6. Test Program Listing

26

OUTPUT OF SIMULATION

*CO ITC. IMTSRRUPT C'

V 6 E...4 A .0O DATA *.00ADDS * 00IME .IMII::.G PC00 TEMP S.O TAT a.O CUDR.00 POR.O
... G~ I my . INN .. !00

LABEL CYCLE I TRUE PLAS kLS CLOCK CYCLE I

/A KA 2%B ASoIA
/LO P(0I/

:**e0ggSgY* *C* 1N*T gCAgOC;OCXRC*Cgg~C.CgggegCCCg UP T ...
IO' SMN 0MERUC'
i - 0.1 .. 1 A- .0O~ .0 ADDS : !00 ME

KR - HAGPCOO TEMP 3*8 O 1AT ::D ..00 CWB*00 JIM~* .5
Inl - ... * INU PC . .0I1R

LABEL CYCLE 2 TRUE LABELS CLOCK CYCLE &

V * .. I* K .. 1 /1TI"OO DATA ::*00 D~*00 E
* .00 P * 10 TMP - *.00 STAT * m Poe0 CWR*..0 C

I~l*...a IN, 2 N .. 0IY 0

LABEL CYCLE 3 TRELASBELS CLOCK CYCLE 2
*eS~***gee.*gegeeeeeeeeeVeceeeeeeeoee.Cee40)e/**~'*.*''*

LABEL CYCLE 4 JAELABELS CLOCK CYCLE 2

in P ..0 PC i TEMP. *.0Q STh AT .A CW0. .00 CPOR.

LABEL CYCLE S TRUE LABELS CLOCK CYCLE 3

L ABEL CYCLE TR:;UE LABELS CLOCK CYCLE 3
Y*.. D..l A.G ATA ::F21 A00.00 lE..D

In ..00 P C.00 TEMP.: :*00 STAT .A2 CWOR- 0.01O C~.4

LABEL CYCLE 1 TRUE LASBELS CLOCK CYCLE 4

LABE CYL a TRUE L.ABELS CLOCK CYCLE 4

Y*.j .. 2 A-0 OATA ..F9 ADOO 0100 I MN 0

,NIT :?'aTNT TRTEMP *00 STAT .. A2 CWOR - ..00 Pe V

LABE CYCLE . TRUE LABELS CLOCK CYCLE 9
/A DPIOI/

LABE CYCL 10a TRUE LAB EL S CLOCK CYCLE s

Y X *.1 O .3 A*.0 ATA ..F9 ADOS - 0100 1NEE ...

Figure 7. Simulator output, Page 1

27

Mt -. :. :NI JAR 5 'TAT a *.AZ CWO * ..Go CPOR

LABEL CYCLE 11 TO AqLS CLOCK CYCLE 6

LABEL. CYCLE -12 /RR UE1 JA8E S CLOCK CYCLE 6 s

-~ .047&~h ..:1 *000 !!S 0 I IOE~*
.. 00 STAT c . ZCOR .0 CPOR 4

LABEL CYCLE 13 ,1 UELASjLS CLOCK CYCLE I

LABEL CYCLE L4 14 11E CLOCK CYCLE I

.0101 -EP.. ..4AO ! 1
.Il : ::ICOR*.00CO *.

LAEM CYCLE 19 TRUE LABELS CLOCK CYCLE S

ON .0 94T 0 *0D 0019 h*ff..

LABEL CYCLE 16 TRUELAS 0 CLOCK CYCLE 9

LABEL CYCLE 11 TRUE LABELS CLOCK CYCLE 9

LABEL CYCLE to TRU.E LABELS CLOCK CYCLE 10

LABEL CYCLE 12 Tggf JA85LS CLOCK CYCLE 10

LABEL CYCLE 20 141UE LAESCLOCK CYCLE t7
IR A AV8P IOIINO

*e~ * 5* * e~~e g 55 ee 5 e, 55 5 Oe e5 e O ~ 5* e, O O ~OTIN* ** * @ S O5T*5O1S

Figur 2. Simuao aupt Pagen

28

Due to the extremely large amount of data that is produced, only

these samples are shown.

As stated earlier, a measure of the fidelity of a simulation can

be made using a timing analysis. Inspection of the microoperation

sequences can show that the individual operations correspond to the

target machine, but only a timing analysis can demonstrate the inte-

gration of the system as a whole. A timing analysis also serves to

highlight any timing irregularities inserted by the mechanics of the

simulation. An example of this type of analysis, using the simulation

developed for this project, is presented in Figure 9. The figure

lists the assembly language program run by the simulation and presents

an accounting and comparison of the timing factors.

The analysis illustrates two of the irregularities of the simula-

tion that were discussed earlier in the paper. The first is the extra

clock cycle added to all immediate operations, such as MVI (MoVe Imme-

diate). The alternative to this added cycle was to create a separate

routine for each immediate operation, an alternative judged to be far

less acceptable. The second factor shown is the presence of two clock

cycles added to each memory and I/O access. As explained earlier, this

factor is introduced by the software timing mechanism. Even though

the mechanism is not updating the machine cycle and state numbers dur-

ing an access, the master clock must continue to run to provide exe-

cution timing. The cycle and state numbers remain correct, but the

clock cycle timing must include a correction factor to account for the

extra cycles. The analysis must also account for program dependent

conditions. The interrupt generated in the execution of this program

29

Operation Cycle Time Factor Total

PUSH PSW 10 6 16

MVI 7 4+1 12

OUT 10 6 16

MVi 7 4+1 16

OUT 10 6 16

IN 10 6 16

STA 13 8 21

POP PSW 10 6 16

El 4 2 6

RET 10 6 16

El 4 2 6

MVI 7 4+1 12

OUT 10 6 16

LDA 13 8 21

OUT 10 6 16

HLT 7 2 9
224

Operation times 224
Interrupt time 14
Startup time I

239 clock cycles

Figure 9. Timing Analysis

30

is handled by the 8228 module as a RESTART 7 instruction, producing

14 clock cycles that have no apparent source in the program code. As

shown in the figure, all of these times may be added together to pro-

duce a time estimate, measured in clock cycles. This estimate agrees

exactly with the timing of the simulation run of the program.

V. CONCLUSIONS

The project described in this paper is mainly the proof of a

concept. The ability of the CDL simulator to accept the integration

of a preprocessor and faithfully simulate a microprocessor-based sys-

tem is evaluated by attempting an implementation of those tasks. The

effort was directed at making the implementation succeed rather than

making it highly practical. Yet the practicality of this simulation

is certainly one of its strongest assets.

Certainly, the first candidate for application of this package

is hardware simulation, the most common use of simulator packages.

Simulation permits the comparison of alternate constructs at any level,

from single devices to system architectures, to provide performance

data without the investment and time penalty of actual hardware con-

struction. Such a process can be used to fine tune a system for a

specific application. The simulation of software is a less obvious

candidate for application, but the same refinement process can be used

to view program execution on a time-phased, register-transfer level.

Such refined software would be useful for the highly compact, intensely

iterative programs normally stored in read-only memory for process con-

trol or communications handling devices.

To facilitate application of this simulator, there are several

improvements that can be made. These improvements range in difficulty

from major revisions to relatively simple extensions of the existing

31

32

program. Language versatility is one of the simple extensions. The

preprocessor, as currently written, will service only the Intel 8080

assembly language. However, the necessary mechanisms for choice of a

language set are already included in the preprocessor program. The

alternative language would have to be reduced to a table format com-

patible with the preprocessor. Pseudo-operation routines would have

to be written and included in the already stored subroutine. Finally,

alterations would have to be made to the routines for operand inter-

pretation if the conventions of the desired alternative differed sub-

stantially from those of the 8080 assembly language. Due to the in-

creased storage requirements for these alternative user-selected op-

tions, the most effective implementation of these features might be

to compile complete versions of the simulator package for each lang-

uage to be used and have them user-selected as a part of basic program

selection. This method would allow versatility without sacrificing

program compactness.

Another avenue for improving the simulation lies in that of sim-

ulator expansion. The current version of this program proves that

system simulation is feasible. To make the simulator more useful, a

library of module and device simulation routines could be developed.

The hardware modules and microprocessor simulations could be selected

to produce the desired system configuration. Addition of an assembly

language program for the target processor would complete the system

simulation, ready for input in the simulator.

The greatest return in efficiency could be reaped after the great-

est effort in program improvement: restructure. The current program

33

is time consuming not only because it is so intensely iterative, but

because it suffers from the time penalties imposed by its base lang-

uage and structure. FORTRAN shares the algebraic format of CDL, but

the deeply nested subroutine calls and complex logic used in the sim-

ulator do not lend themselves to time-efficient computation. The use

of structured programming could help to streamline the sequence of

subprograms being called and avoid some of the machine overhead in-

volved in those calls, even at the expense of some redundant coding in

different routines. The use of a structured language, such as PASCAL,

could produce even more comprehensive changes. Constructs such as

the CASE statement could replace sections of decoding logic and dras-

tically reduce execution time while improving program flow. The bit

manipulation functions lacking in FORTRAN could possibly be incorpor-

ated through the alternate language, eliminating the necessity for

sizable assembly language subroutines to perform those functions. The

resulting program unification would certainly be a significant achieve-

ment. A restructured program might also be able to handle concurrent

processes with greater ease by eliminating the need to evaluate every

conditional microstatement on every iteration of the program. As

stated before, the effort involved in a restructure is extensive, but

the resulting improvements in utility and computational speed woulH

be most impressive.

Simulation is an important tool in system design. Its merit rests

in its ability to save money and effort by pcoviding results of tests

on system configurations that exist only on paper. The simulation

package developed in this project attempts to combine tile important

34

user-oriented features, high level of detail, and easily interpret-

able simulation results. There are ample opportunities to use the

system as it exists and system improvements options exist at various

levels of effort. The possibilities of microprocessor-based system

simulation are limited only by the imagination and energy of the user.

REFERENCES

1. Chu, Yaohan, "Introducing the Computer Design Language," Digest of

Papers, Comcon 72, San Francisco, September, 1972, pp. 215-218.

2. Chu, Yaohan, Computer Organization and Microprogramming, Prentice-

Hall, 1972.

3. Cwik, Terry T., Multiprocessing Simulation of the Intel 8080 and

the PDP-8 Using Computer !sin Language, Auburn University,

Auburn, Alabama, 1976.

4. Donovan, John J., Systems Programming, McGraw-Hill, New York, 1972.

5. MCS-80 User's Manual, Intel Corporation, Santa Clara, CA, October

1977, pp. 2-16 to 2-19.

6. Ibid., pp. 6-1 to 6-38.

7. Ibid., pp. 6-223 to 6-243.

35

APPENDIX A

CDL SIMULATOR

US7R'S MANUAL

36

FOREWARD

This manual is based mainly upon information presented in the

original user's manual compiled by Terry Cwik. The manual was re-

written and restructured to include material on the functional des-

cription of the CDL simulator as well as its syntax and to improve

the clarity of the original manual. The user's manual for the CDL

simulator preprocessor was also added.

Syntax in this manual is presented in a standard notation. For-

mats are presented on a line separate from the text. Upper case

items refer to entries which must be made exactly as shown. Lower

case items refer to types of entries only. All delimiters, such as

slashes and parentheses, are considered significant and required.

37

TABLE OF CONTENTS

Introduction... 39

CDL Structure.. 39

Translator Section... 40

Declaration Statements

Micros tatenents

Simulator Section.. 44

Syntax.. 45

General Syntax

Control Cards

Appendices... 52

CDL Simulator Preprocessor User's Manual

Error Codes

38

Introduction

Computer Design Language (CDL) was originally designed by Dr.

Yaohan Chu in 1965. It was designed to represent the architecture and

operation of computer hardware at the register transfer level, using

an algebraic notation. The language is versatile enough to serve two

major purposes. CDL can serve as a standard language for defining the

structure of digital systems, especially in an instructional setting.

The language, used with a simulator program, can also be used in the

simulation of existing digital systems or in the testing and develop-

ment of new systems. This handbook is intended as an aid in using

CDL in this second manner, with an incorporated simulator program.

CDL Structure

The CDL simulator program works in several logical steps. The

first step is accomplished by the translator section. The logical

design of the subject hardware, written in CDL, is read into the host

computer as card images. The translator converts the hardware design,

in the form of declaration statements, into a form suitable for com-

puter manipulation, namely groups of tables and a pseudo program

called the Polish string.

This information is passed to the simulator section, composed of

five routines. The loader routine accepts programs and data to be

loaded into the simulated memory or specified registers in the design.

The simulator routine controls the execution of the test program. The

switch routine incorporates the options of manual switch settings.

The output routine controls the identity and frequency of output values

39

40

produced by the simulation. The simulation may be reinitialized for

another test by the reset routine.

Translator Section

The first task in using CDL for simulation is to specify the de-

sign of the selected logical circuit in CDL terms. This specifica-

tion normally occurs in two phases. In the definition phase, the hard-

ware architecture of the system is stated. In the operational phase,

the logical actions of the system are defined at the register trans-

fer level. The definition phase consists mainly of declaration state-

ments, defining the hardware elements as variables, so that they can

be used in expressing the operation phase statements.

Declaration Statements. These statements are used to define ba-

sic hardware units. The following devices are defined in CDL:

REGISTER SWITCH

SUBREGISTER TERMINAL

MEMORY BLOCK

DECODER CLOCK

LIGHT BUS

The first four characters of each device name are significant to the

simulator. The syntax of the declaration statement is

device name, list

The device name begins in column two and the comma trailing the device

name is required. The devices are discussed in more detail below.

41

REGISTER Declaration. An individual register is defined by a

name and a number in parentheses. This number defines the length and

order of the bit positions. Default value of the number is a single

bit. Examples are presented in Figure A-2.

SUBREGISTER Declaration. This declaration identifies a section

of a previously declared register. The declared register, followed

by the subregister name, is equated to a certain string of bits within

that register. Subregister names must be unique to the four signifi-

cant characters, even when referenced to different registers. Examples

are presented in Figure A-1.

MEMORY Declaration. A memory is referenced by its name and a

previously declared register which will be its address register. The

range of the address and the bit order of the words in the memory are

specified. Thus,

MEMORY, M(R) = M(O-99, 7-0)

defines a 100 byte memory space named M.

DECODER Declaration. This declaration defines a device which

equates each value of the contents of all or a section of a previously

defined register to a single output. The decoder's name and range of

values is equated to the register or section of a register. Examples

are presented in Figure A-I.

CLOCK Declaration. A clock is defined for the purpose of event

synchronization. It can only be referenced in a label expression, to

be defined later. The clock is defined by its name and a number, one

42

less than the number of discrete timing levels desired. Examples are

presented in Figure A-i.

SWITCH Declaration. An external switch condition can be simulated

by this declaration. It is defined by the switch name and possible

positions, initial position first. A maximum of ten switch positions

is permitted. An example of the definition format would be

SWITCH, STRT (OFF, ON), TEMP (TI, T2, T3).

In use a switch may be either set or read. To set a switch, the name

is equated to the desired position, such as STRT = ON. A switch is

read, giving a value of I or 0, by citing the switch and a position,

such as STRT (ON).

TERMINAL Declaration. Logical networks or multiple references

for a single device are handled by the TERMINAL declaration. The

terminal is simply defined in terms of previously declared devices.

Its use may be very similar to a DECODER declaration. Examples are

presented in Figure A-I.

LIGHT Declaration. Panel lights may be included by using this

declaration. As in the SWITCH declaration, the light is named and

its states given, initial state first.

LIGHT, RUN (OFF, ON), PWR (ON, OFF)

is a typical example. The set and read options also follow the form

of the SWITCH.

BUS Declaration. A bus is defined in terms of its width in lines,

as in BUS, DATA (0-7), ADDR (0-15).

43

BLOCK Declaration. This construct is actually a software mech-

anism, similar to a subroutine. The BLOCK name serves as a title for

a group of microstatements, as defined below. The microstatements are

enclosed in parentheses, with nesting and such options as IF, THEN,

ELSE allowed. This group uf statements is called to be executed by a

DO statement, in the form

DO/block name.

Thus

BLOCK, SWAP (A=B, B=A)

would be called by

DO/SW.AP.

Micro Statements

Once the hardware architecture has been defined, the logic func-

tions impressed on these elements are defined using microstatements.

The basic form of a microstatement is

variable = expression

An expression is a group of variables and their associated operators.

The standard operators listed in Table A-I are available for use

in microstatements. Special operators may be defined by the user in

a separate subprogram. This subprogram is of the form

*OPERATOR, first argument,name,second argument

// operations comprising the function of the
operator, RETURN END

Argument names must include bit structure if over one bit. The se-

cond argument is necessary only for binary operators. The blank la-

bel, //, will cause immediate execution of the listed operations when

44

the operator is invoked by its name. The subprogram is rerminate

by the RETURN and END. Table A-I also lists several special operators

built into the simulation program.

Microstatements have several forms. An unconditional microstate-

ment is of the form

variable = expression.

The effect of this construct is to replace the named variable, a stor-

age element, with the result of the expression. The named variable,

either a device or a part of a device, must not be replaced more than

once in any set of microstatements to be performed during a single

cycle.

A conditional microstatement is of the form

IF (expression) THEN (microslatements).

If the expression contained in the parentheses following the IF is

true, thus equal to 1, then the microstatements following the THEN are

executed; otherwise, they are simply skipped. This form may be extended

to the form

IF (expression) THEN (microstatements) ELSE (microstatements).

Execution is identical to the first form, except that when the expres-

sion is false, the microstatements following the ELSE are executed.

These forms may be nested by using the precedence rules of parentheses.

This nesting capability can be used to design complex .and powerful de-

cision functions.

Microstatements are used to build other types of statements. The

switch statement has the form

/ switch name (position) / microstatements.

F-
45

If the named switch is in the indicated position, the microstate-

ments are executed; otherwise, they are not. This construct sim-

ulates the sensing of switch positions.

The most common statement in simulations is the label statement.

It has the form

/ label / microstatements

where a label is the logical AND of an expression and a clock level.

The expression must not include a reference to a clock level. When

the expression and the clock level are both logically true, the mi-

crostatements are executed. This construct simulates the execution of

time-phased logic.

Finally there is the end statement. The word END indicates the

physical end of the statements defining a system design. It termi-

nates the translation process and causes control to pass to the simu-

lator routines.

Simulator Section

Once the hardware and operational definitions have been made, the

simulator is prepared to execute the test program. The execution

is carried out in a loop of processes called the label cycle. During

each cycle, four tasks are performed. First, if any switch action is

designated to occur in the current label cycle, the executable state-

ments that it activates will be performed. Secondly, "all label values

are evaluated and those with true label expressions are noted. Third,

the statements corresponding to the true labels are executed. All

values resulting from these statements are evaluated, collected, and

--

46

then stored. Fourth, it is determined if the simulation should be

terminated at this point. If not, the next label cycle is begun. If

it is terminated, a RESET routine may be called to begin another simu-

lation.

Syntax

As with all computer programs, there are syntax rules which must

be obeyed if the program is to function as specified. There are

general syntax rules for the use in all statements and control cards

to direct the sequencing of the simulator program; the Job Control

cards necessary to run this program will be considered separately.

General Syntax

Variables. A variable must be defined in a declaration statement

before it can be used elsewhere. A variable may consist of one to

four characters. The first character must be alphabetic. Embedded

blanks and special characters other than "+ " , " "* /" "

fi$, 1$0, or "=" are simply ignored and dropped. Longer variable names

may be used, but the translator uses only the first four significant

characters. Thus "STARTI", "START2", and "STAR" are all treated as

"STAR" by the simulator. The following words are reserved and must

not be used as variable names: IF, THEN, ELSE, DO, CALL, RETURN, and

END.

Constants. Three forms of numerical constants are available for

use. A hexadecimal constant, denoted by a colon preceding its digits,

is accepted up to a maximum of eight digits. A binary constant, de-

noted by a semicolon preceding its digits, is accepted up to a maximum

47

of 32 digits. A decimal constant, denoted by no delimiter, is ac-

cepted up to a maximum of nine digits. Blanks, special characters

other than those listed above, and characters outside the set permis-

sible for the particular form are ignored and dropped.

Continuations. Declaration statements are continued to subsequent

cards by placing a "I" in column one of the subsequent cards. Label

and Switch statements are continued to subsequent cards by leaving

column one blank. All statements are limited to 250 terms, where a

term is considered to be either a variable, a constant, or a valid

special character.

Comment Cards. Placing a "C" in column one will produce a com-

ment line, ignored by the translator. Placing a "C" in column one of

subsequent cards allows continuatiuti of the comment.

Card Format. Declaration statements, labeled statements, and

END statements may be punched anywhere in columns two through 72.

Column one is used only for comments and continuations. Free use of

blanks is permitted and is encouraged to promote readability.

Control Cards. Control cards are used to call the functional ele-

ments of the simulation system into action. These cards will be dis-

cussed in the order in which they will normally be encountered.

Translator. The translator is called first to translate the de-

sign information into a form suitable for simulation by the program.

The first column contains the control symbol "$", followed by the

control word TRANSLATE or TRANS. The translator will retain control

until the next card with the control symbol in column one is read.

The design deck must begin with the control card (MAIN, where the se-

48

condary control symbol "*" appears in column one. The design deck

is terminated using an End card, with END in columns one through three.

If special operators are to be defined, they are separated from the

rest of the translation. The special operator defintions are all

started with the *OPERATOR card and closed with the END card.

Simulator. Control is next passed to the simulator by the $SIMU-

LATE card, with the control symbol in the first column. Asterisk con-

trol cards are used to pass control between the simulator's five rou-

tines: Output, Switch, Load, Simulate, and Reset. Unlike the pre-

ceding example, END cards are not necessary to separate sections.

The Output routine specifies the format of the printed output

of the simulation. The format of the control card is as follows:

columns 1-7 *OUTPUT

columns 11-15 CLOCK or LABEL

columns 16-21 (n,m)=

columns 22-72 list

The CLOCK or LABEL designation controls whether data is output on clock

cycles or label cycles, beginning on the nth cycle and repeating

every mth cycle thereafter. The list following specifies the regis-

ters, memory locations, and other devices whose value is to be out-

put each time. Continuation cards for the list are permissible as

long as column one is left blank. All output values are listed in

hexadecimal format, regardless of input format.

The Switch routine allows the simulation of manual switch set-

tings. A separate card is necessary for each switch action. It has

the following format:

49

columns 1-7 *SWITCH

columns 11-12 n,

column 13 switch name = switch position

The number n specifies the label cycle before which the switch action

occurs. The switch name and its position must have been declared pre-

viously. In the output, each switch action will cause an output with

a heading which states that the switch action has occurred.

The Load routine stores test programs and data in memory and re-

gisters. The *LOAD card precedes the data cards. Data cards use col-

umns 2 through 72, with free use of blanks permitted. There are no

continuation cards. Each card must be begun in column 2 and be self-

sufficient. A data card may contain a number of lists, separated by

commas. Only declared full registers and full memory locations may be

loaded. The format for the two types of entries are different. Re-

gisters are loaded with the format

"register name = n",

where n is the value to be loaded. There are three variations of the

format for loading memory locations. Single memory locations can be

loaded in the form

M(m) = n,

where M(m) denotes location m of memory M and n denotes the value to

be loaded. Multiple consecutive locations can be loaded in the form

M(ml-mx) = nl,n2,... ,nx,

where locations 1 through x are loaded with values nl through nx. The

ending address may also be implied rather than stated in the form

M(ml-) = nl, n2,...,ny,

50

where consecutive memory locations are loaded, beginning with ml and

continuing until y locations are filled. There is a software imposed

limit of 80 load entries.

The Simulate routine initiates the actual simulation subprogram.

The control card specifies the simulation termination parameters. It

has the following format:

columns 1-4 *SIM

columns 11- n,m

The number n specifies the maximum number of label cycles to be gen-

erated. The number m specifies the maximum number of consecutive la-

bel cycles to be allowed without a change in the active labels. When

m label cycles have passed with no changes, the simulation is auto-

matically terminated.

The Reset routine performs reinitialization of the simulator sub-

program to allow another run of the simulator on the same design. The

control card has the following format:

columns 1-6 *RESET

columns 11- options

The options are one or more of the following terms, separated by com-

mas. CLOCK resets the clock cycle only. CYCLE resets the label

cycle counter and the clock cycle counter. OUTPUT resets the previ-

ously requested output parameters, just as SWITCH resets the previ-

ously requested manual switch operations. In both cases, another

*OUTPUT or *SWITCH card is expected. The next simulation will beginl

with another *SIM card.

51

A typical simulation with all internal control cards appears in

Figure A-2, depicting a single simulation run. While these internal

cards are uniform, external control cards are unique for each site.

The job control cards necessary to use the CDL program stored in a

given system must be obtained.

52

REGI, A(0,2), R, F(6-1)

i0 o 1I 21 1 61 51 41 1 21 1I
A R F

SUBR, A(OP)=A(1,2), F(IND)=F(6-4)

A(OP) F(IND)

DECO, D(O-1)=R, L(O-15)=F(2-5)

I f i i ..f

CLOCK, P(2)

P (0)

P(1)

P(2)

TERMINAL, C(O-2)=A(0-2) ', D=(B(0)+B(1))

cioeT I C

FigUre N-I.
CDL Device Ex TDle

53

C * (NO OP TRANSIAT|ON, SEGIN SIMULATION o

*OUTPUT LA #2I y ATA6UFAoO8UFFER.IERe INT,
I NPC T U 2ORTAPORT INTl* iNTLk¥TC A|,/NTSTD'ON MT

OSWdi TC AS 140 A- eON

OLOaC

ASP 0080 NEN 0000555,1
L00005560

&R 00005570

ASSENLY BEGINS HERE

M1q OM TAKE

OP8L 127P VA U1 0034
IVOSO. PT YALUE

S~ WL
8
U 0100

YMB50L OUTPUT VALUE 0105

LC CODE PROGRAN STATEMENTS

0 IT00 0CA ON *C IOOH STORED DATAONG 56
0INTERRtUPT HANDOLER ROUTINE

0oa 32 3IU " AS . IN*T IGNAC
00A 0 003 ;OUT S TO T A

00004 3i 0TO::1" 0 IT

oN I 0'

0046 C9 117 nR T 4ONG 010014

OtO O *e f I SETUP# El MAIN ROUTINE JIMA*E T

0101 3N9 SIVA A99 IT MT

Fiur D3 03Sml w o
315 A DO 02 OJrPUT Lu OH ILOAD CHARACTER

10. D 0 0 00 OU TPUT TO PONT A

0200 c2 00 J faOC2" iSTORED INFO

N SO2A Sr

140mEN OF ASSEMBOLESI ROUTINE te

S1NI OF DATA OIN INPUT

Figure A,-2. Simulation with Control Cards

54

STANDARD OPERATORS

SYMBOL FUNCTION EXAMPLE EXPLANATION

I Complement A' Logical NOT a
(apostrophe)

- Replace A=B Contents of A are replaced by
(equal sign) contents of B

- Concatenate A-B Contents of A and B are placed
(dash) side by side

+ Logical OR A+B Bit by bit OR, where A and B
(plus sign) must be conformal

* Logical AND A*B Bit by bit AND, where A and B

(asterisk) must be conformal

.EQ. Equality A.EQ.B Gives '1' if A and B are equal,

function '0' if not

.NE. Inequality A.NE.B Gives '1' if A and B are unequal,

function '0' if they are not

SPECIAL OPERATORS

.ERA. Exclusive OR A.ERA.B Exclusive OR of A and B

.ADD. Sum A.ADD.B Algebraic sum of A and B, with

overflow bit discarded

.SUB. Difference A.SUB.B Algebraic sum of A and NOT B,
with overflow bit discarded

.COUNT. Increment A.COUNT. Adds 1 to A, with overflow bit
discarded

.LT. Magnitude A.LT.B Gives '1' if algebraic conditions

.LE. operators A.LE.B (less than, less or equal, greater

.GE. A.GE.B or equal, greater than) are met,

.GT. A.GT.B '0' if they are not met

Table A-i. Standard and Special Operators

APPENDIX A-i

CDL SIMULATOR PREPROCESSOR

USER'S MANUAL

This manual is designed to present the rules and constructs governing

the operation of the preprocessor option of the CDL simulator program.

Corresponding information on the features of the simulator itself is

contained in the basic user's manual. Familiarity with the simulator

is assumed for the reader of this manual.

55

TABLE QF CONTENTS

Format... 5

Assembler Options.. 5

Aosembly Language Program.. 58

Data Types.. 59

Pseudo-ops... 60

Error Handling... 62

56

PREPROCESSOR USER'S MANUAL

Format

The standard unit of input to the preprocessor is the card image.

The preprocessor is written in FORTRAN, a language with limited bit

manipulation capabilities. The card image, therefore, must be highly

structured. It consists of a number of fields, some of which are op-

tional. Violation of the format will result in a printed error message

and a termination of the processing at the next logical break point.

Assembler Options

The first information given to the preprocessor must be the user's

choice of the available options. The first card of the load module

contains three fields. The first field, columns 2 through 5, must con-

tain the directive "ASM" in order to invoke the assembler. The second

field, columns 6 through 9, contains the assembly language option. The

original version of the preprocessor responds only to the choice

"8080" which invokes the Intel 8080 assembly'language. The growth op-

tion to alternative languages is provided in the preprocessor code.

The third field, columns 14 through 17, is reserved for the name of the

memory device where the object code is to be stored. This device name

must have been declared earlier in the hardware definition portion of

the simulation program. The name may contain more than four letters,

but as in the CDL simulator, only the first four are significant.

57

58

The second card contains a single field, columns 2 through 5,

for the symbol table listing option. The directive "LIST" will cause

the symbol table to be printed out at the beginning of the assembler

output. The directive "NOLIST" will suppress the printing of that ta-

ble. As with the memory name declaration, only the first four let-

ters of that directive are significant. This card and the one follow-

ing it are designed as single cards to provide for easy changes of

those options that are likely to be changed.

The third card is the location counter initialization card. The

single field, columns 2 through 5, may contain one of two directives.

"NORG" specifies a location counter of zero. "ORG=" followed by the ex-

pression beginning in column 6 will set the location to the value of

that expression. The expression is delimited by the first blank en-

countered. This card is followed by the assembly language program.

Assembly Language Program

The standard line of the assembly language program is of the form:

label: opcode operand, operand ; comment

The first field of the card image is the label field. This optional

field begins in column 2. It may contain a maximum of six alphanumeric

characters, the first of which must be alphabetic. The field termi-

nates with a colon.

The second field is the opcode field. This required field begins

in column 10. It contains a maximum of four alphabetic characters,

terminating in a blank. The contents of this field must match the

59

mnemonic opcodes stored in the assembly language table being used by

the assembler or an error will be generated.

The third field is the operand field. This field may be required

based on the requirements of the preceding opcode. The field may con-

tain alphanumeric characters, labels, or expressions terminated by a

blank. There can be no embedded blanks. If two operands are required,

they are separated by a comma.

The fourth field is the comment field. It begins immediately af-

ter the blank terminating the operand field. If there is no operand

present, it begins in column 22. While no delimiter is required to

separate it from the preceding text, a semicolon is suggested to im-

prove readability. The line must end by column 72.

An entire line of comment can be entered in the place of a line

of program code by inserting an asterisk in column 1. The following

line receives no processing.

Data Types

The assembler supports six basic data types. The format of each

is specified as follows.

Decimal data. Each decimal number contains only numerics.

Examples: 14, 17.

Hexadecimal data. Each hexadecimal number must begin with a nu-

meric digit and must te followed by the letter If. Examples: 9B7H,

OAFH.

Binary data. Each binary number must be followed by the letter

B. Examples: 1101B, OIIB.

60

Octal data. Each octal number must be followed by the letter 0.

Examples: 720, 550.

Character data. Character data may be introduced, mainly via

the DB or DW pseudo-ops. Data strings must be delimited at both ends

by single quotes. Further coding rules are included in the discus-

sion of the DB and DW directives. Examples: 'HELLO', 'CHAPTER 2'.

Expressions. Only simple expressions involving addition and sub-

traction are supported by the assembler. No leading minus signs or

embedded blanks are permitted. No special delimiters are used for ex-

pressions, which are terminated by the first blank encountered. Label

data may be used in addition to numeric values. Numeric data alone is

considered as a simple expression. Examples: LABEL+3, 14, SLM-2+TAX.

Pseudo-ops

The assembler, in addition to machine operation codes, supports

certain pseudo-op codes or assembler directives which control the as-

sembler as it generates object code. The mnemonics for these direc-

tive commands are included in the operation code table of the prepro-

cessor, with a flag that identifies them as pseudo-ops and transfers

control to a routine performing the necessary functions. These func-

tions are of several types.

Data definition. The DB (Define Byte) and DW (Define Word) di-

rectives define data to be entered into storage locations. DB stores

data as eight bit values in consecutive storage locations. The oper-

and of this directive may be either an expression or a string of char-

acter data. The expression must be able to be represented by an eight

bit value. A text string may contain up to a maximum of 3ixteen char-

61

acters and:will be stored as the numerical code equivalent of the in-

dividual characters in succession. The DW directive stores data as

a sixteen bit address in two bytes, least significant byte first. The

operand may be either an expression or a text string. The expression

must be able to be represented by a sixteen bit value. The text string

may contain up to sixteen characters.

Memory reservation. The DW (Define Storage) directives reserves

a number of successive bytes for data storage. The operand is an ex-

pression, the value of which determines the number of bytes reserved.

The contents of the spaces are unchanged by the operation and are not

predictable without specific initialization.

Assembler termination. The END directive identifies the end of

the assembly language program. It causes each pass of the assembler

to terminate.

Symbol definition. The EQU (EQUal) directive assigns a value to

a label. The expression in the operand field is evaluated and the re-

sulting value assigned to the label preceding the directive.

Location counter control. The ORG (ORiGin) directive sets the

location counter to the value of the expression in its operand field.

Output. The output of the assembler is hexadecimal object code

and its associated hexadecimal location counter for each input line.

The output is of the form:

location counter code text of source line

The symbol table, if requested, is presented prior to the assembled

output. The preprocessor then reformats the assembler output into

card images compatible with the CDL simulator loading subroutines and

62

initiates the loading process. The card image data is loaded directly

into the simulator's storage area by the program. The card image out-

put is also printed for reference.

Error Handling

The design philosophy for error handling in the preprocessor is

to process the maximum amount of information possible in spite of re-

cognized errors, without propagating those errors. Thus errors in the

assembly option cards normally cause termination of assembly after the

printing of the appropriate error message, because the effects of the

errors on subsequent processing is unknown. The exception is an option

with a default value, such as the listing and origin options, where

recovery is made by assuming the default value. Within separate passes,

processing is controlled by an error count. Pass one results are

printed and assembly terminated only if there have been errors in the

format of the program. Pass two errors are generally syntax errors,

which result in the printing of the appropriate error messages with

the output and a termination of the preprocessor reformatting and

loading sequence. The net effect of the design philosophy is to flag

as many errors as possible in a single run of the simulator, thus mini-

mizing the total number of runs necessary to correct a program. This

efficient interface to the operator is a visible benefit of the pre-

processor.

APPENDIX A-2

ERROR CODES

Errors encountered in generation or running of the simulator are iden-

tified by a seven character code. This appendix lists these diagnos-

tic codes and their associated meanings.

63

TRANSLATION ERRORS

CDL1001 MISSING HEADING STATEMENT
CDLI002 INVALID STATEMENT CONTINUATION
CDLI003 UNRECOGNIZED STATEMENT

CDLI004 EXCESSIVE STATEMENT LENGTH (MORE THAN 250 TERMS)
CDL1101 SYNTAX ERROR IN *HEADING STATEMENT
CDLI201 UNRECOGNIZED DEVICE DECLARATION
CDL1301 MISSING COMMA IN REGISTER DECLARATION

CDL1302 INVALID VARIABLE NAME IN REGISTER DECLARATION
CDL1303 INVALID REGISTER SIZE FORMAT
CDL1401 MISSING COMMA IN SUBREGISTER DECLARATION
CDL1402 GENERAL SYNTAX ERROR IN SUBREGISTER DECLARATION
CDL1403 UNDECLARED OR INVALID DEVICE REFERENCE IN SUBREGISTER

DECLARATION

CDL1404 INVALID REFERENCE REGISTER BIT STRING DEFINITION IN SUB-
REGISTER DECLARATION

CDLI501 MISSING COMMA IN MEMORY DECLARATION

CDLI502 GENERAL SYNTAX ERROR IN MEMORY
CDLI503 INVALID BIT STRING DESIGNATION IN MEMORY DECLARATION

CDL1504 UNDECLARED REGISTER OR INVALID DEVICE TYPE IN MEMORY
DECLARATION

CDL1551 MISSING COMMA IN BUS DECLARATION

CDLI552 INVALID VARIABLE NAME IN BUS DECLARATION
CDL1553 INVALID BUS SIZE FORMAT

CDL1601 MISSING COMMA IN DECODER DECLARATION
CDLI602 GENERAL SYNTAX ERROR IN DECODER DECLARATION

CDL1603 UNDECLARED OR INVALID DEVICE NAME IN DECODERDECLARATION

CDL1701 SYNTAX ERROR IN CLOCK DECLARATION
CDL1702 TWO CLOCK DECLARATIONS
CDL1801 MISSING COMMA IN SWITCH DECLARATION
CDLI802 SYNTAX ERROR IN SWITCH DECLARATION

CDLI851 MISSING COMMA IN LIGHT DECLARATION
CDL1852 SYNTAX ERROR IN LIGHT DECLARATION
CDLI901 SYNTAX ERROR IN TERMINAL DECLARATION

CDL2001 SYNTAX ERROR IN BLOCK DECLARATION

CDL2101 SYNTAX ERROR IN 'DO' STATEMENT
CDL2102 INVALID OR UNDECLARED DEVICE NAME-
CDL2103 SYNTAX ERROR IN CONDITIONAL MICROSTATEMENT
CDL2104 UNDECLARED OR INVALID DEVICE REFERENCE IN MICROSTATEMENT
CDL2105 INVALID USE OF CONSTANT

CDL2201 A BLANK LABEL MAY APPEAR ONLY IN AN 'OPERATOR' OR 'SEQUENCE,
PROGRAM WITH ONE OR TWO ARGUMENTS

CDL2202 SYNTAX ERROR IN LABEL STATEMENT

CDL2203 UNDECLARED OR INVALID DEVICE NAME IN LABEL STATEMENT

CDL2301 SYNTAX ERROR IN EXPRESSION
CDL2401 SYNTAX ERROR IN DECODING EXPRESSION

CDL2402 INVALID OR UNDECLARED DEVICE REFERENCE

CDL2501 INVALID OR UNDECLARED DEVICE NAME

CDL2502 SYNTAX ERROR

CDL2601 SUBSCRIPT IS NOT A CONSTANT

64

65
CDL2602 LENGTH SPECIFIED EXCEEDS 72 BITS

CDL2603 SYNTAX ERROR IN SUBSCRIPT

SIMULATION ERRORS

CDL5001 INVALID CONTROL STATEMENT

STATEMENT IS IGNORED, SIMULATION CONTINUES

CDL5101 SYNTAX ERROR IN '*OUTPUT' STATEMENT

CDL5102 INVALID OR UNDECLARED DEVICE NAME IN OUTPUT LIST

NAME IS IGNORED, SIMULATION CONTINUES
CDL5201 SYNTAX ERROR IN *LOAD' STATEMENT

CDL5202 INVALID OR UNDECLARED DEVICE IN '*LOAD' STATEMENT

CDL5301 MAXIMUM LABEL CYCLES TO BE SIMULATED NOT SPECIFIED

100 ASSUMED, SIMULATION CONTINUES

CDL5302 LABEL REPITITION COUNT NOT SPECIFIED IN '*SIM' STATEMENT

3 ASSUMED, SIMULATION CONTINUES

CDL5303 AMBIGUOUS LABEL EXPRESSION

CDL5304 ERROR IN MICROSTATEMENT

CDL5305 ERROR IN LABEL EXPRESSION
CDL5306 ERROR IN SWITCH LABEL EXPRESSION

CDL5401 UNDEFINED OPERATOR ENCOUNTERED DURING SIMULATION

CDL5402 VARIABLE LENGTH OF MORE THAN 64 BITS

CDL5403 MEMORY ADDRESSING ERROR

CDL5404 INVALID STORE REFERENCE OR COMPLEMENT
CDL5405 INVALID USE OF STANDARD LOGICAL OPERATOR
CDL5406 INVALID OR UNDEFINED OPERATOR

CDL5407 INVALID USE OF SUBSCRIPT

CDL5408 INVALID PARALLEL SEQUENCE CALL
CDL5409 INVALID CONDITIONAL TRANSFER
CDL5410 ERROR IN SEQUENCE TRANSLATION

CDL5501 OPERATOR LISTED IS INVALID

CDL5601 INVALID STORE REFERENCE

CDL5602 INVALID OR EXCESSIVE LENGTH OF VARIABLE TO BE STORED
CDL5701 SYNTAX ERROR IN 'SWITCH' STATEMENT

APPENDIX B

SIMULATION OF INTEL 8080 MICROPROCESSOR

66

b7

$ TRAN SLATE
*4A IN

E : SIMULATION OF INTEL BOBO MICROPROCESSOR '

E HARDWARE SETUP

REGISTER, W17-0)5lIT-0O)R17-011C17-0),017-01,EIT-01,H(T-0) 1 -l
1 SPI-hCI114 A- TCHtI5-OlAOD8UFFEP(j-OII RIT-Ol,10

INI FI MAAU!OT'P7O0AI-0 CLATCHI-
I CARRYtlfROoSkrN,PARITYCY1
Bus, INtERNAL17-3)

c
C CONTROL SECTION HARI)WARF
C
REGISTER* SYNC (RtN,REA0Y.wAIT NMR HOLniL0#N 0TRETmf #
I. TI G~iN W06STj, INP ,OUTHN A. ST TCK# IN TA,S SI R,

REGISTER, MREF MAI -2 NWI
SWI TCH INTSfIOF;,ONI,SWINT(OFF ,ONI
DECDE& , TIO-51.,(-

I, OPO 0-7)1p15-3)
TERMINA L, OFI. ~ OFZ-TEMPI1I.OF3=AI1j.ADO0TEMPIT

" FAl'TH jO1TM,2106=fIA0TM

RLOCK, SEVAL I F (DP OlTE EN-B)#
I(IF f03 11 THEN tTEMP~C)I IF 0P3~ 25 THEN (TEMP=DJ

I i I F OPI 3) THEN I TEMP:E1
I IF (OP3(4JI THEN ItEMP H,
I IF I0P31511 THEN ITEMP=L,
I (037if 10P31611 THEP INREF-iif
BLOCK. DEVAL (F0ODO THEN 1B=TE'4P1.

I IFIOOI THEN I C=TEMPP,
I MFOPO(2I I THEN ID:TEMPI,I IFIrJPIJI31 THEN I E TEMPI

IIFIOPOIA 4 THEN I H=TEMP v
&IFIOPOI511 THEN (L=TEMPIt
I F 10P016)) THFN (mW1II A= tX-.-)LFI-,-l
I IFI~FOPOC? I THEN (A rMT T I ' 2MW 1

Bus, AONMM(1-01
MEMORY, MMIAONEM4rMMI0-3O72v?-0)
11bUS LOPO17-01
,EMbY POP T AOMfI-PORT(O-L03o,-01
CLOCK. Pit)

C
C INTEL 82ZS SYSTEM CONTROLLER AND qUS DRIVER HARTVWARE
CEISER SrAftl-oI.N.4P,NA4w.NinR,N[IW,NINT

C
C INTFL A755 PRrRAMMABLE INTERFACE HARflWARE CONFTIUPATI(IN
C
REGISTFQ, INTIINTi NTI,INT Q,RSET,STBA,AC1XA,STBB,

a APURTIY-0',,PORTI-o,rPnRru1-01,CWORn 7-0I,INTFP,
I ~iRFA,flRFA,1PF

68

TERMI.NAL, SFLO.A0POI101,SFLt=AflPoIll,CSLO=AD)POI21,RnLO.NIrR,
I WRLCiNtow

OECOflER, CSET 0-71-CWOR013-11
SWITCH, INITfOFF.ONI , N0ATA1OFF, ON)
BLOCK$ St rC (IF IC ET1011 THEN CPORrjoI-II1NTS-11,

IIF ICSET II THEN ICPoRT I 1 1:1BFB=11.
IIF (CSETIZ)) THEN fCPOPTI21-I,INT3=II,
IIF ICSET 131 THEN ICPCRT131-1I INTR-I11.

IF ICSET 4I I THEN (CPORT14)Ii,t NT2-I I,
IF ICSEtI5I THEN (CPORTIIIIBFA=I,
IF ICSET1611 THEN ICPORtf6),t,INT1-II
I IF I STIITHEN 1CPORT(7).L,O0FA.Idf

BLCK RTCI F ICSETI? TE ICPORTIO 19~0INTS-01
I ~I CSE(I THEN (CPODR T.151.0,I8FA.0

F SE HN CPORT 3 IT
8UbNI E IF~O (CON4THE FUCTIONS 41-0. . I

Bus UM''jUM8I.INPUTI0-7?0

C
C 8080TRONLRLUNCNCIONN
C
CRSTPOIMT=.~T~,EO~,C0 U,=
C

C/SYNC'kPIOI/ OATABUF-MP4MR-INP-Mi 1l-LUT-HLTA-STACK-NWO-INTAStStR-d,

CYC-
C 8228 COJNTROL FUNCTIONS

/STsVRIOp~l / STAT=DATA5UF,NMR=IDBIN*?4EMN Z NWIW'OTl
C ~NIOR-I08IN0INPI',NIOd(NWR'0OUIl'I:NID NOWN-OTA,. STSTR-t

C

C 0

C
C START SWITCH AND EXTERNAL INTERRUPT SWITCH

/INTsrIONI/ A-0 PEADY-1 IX-6 Y-6 NWO.I,NWD.I.NMR.T,NMW-I,NIOR=I ,NIOW~I,
NINT!I STST -1

/S~wINTmINi/ INT , SWINT-lFF

C MEMORY RFAn CYCLE
C
/08 IN*NMP' *P (0/ ACMEM-AD(VBUFFFR
/O8IN*NMR'OP(11/ nATA8F4MAnME.RFADY=I.nBIN-0,MTMR=O,NMP=I

C

69

/M131e7(tj*P(tU*REAOY*"R21 AODBUFFER=ALArCH#
SjYN0-I& 081NzI4REAOVrzOMFMRmt/NU 31*TI2*Pg I,* E A OP2/ MR2=O

C
-c WRITE BYTES INTO ME14ORY
C T(t)*P(II*NWI*REAOY/ ADD6UFFER=ALATCH, INTFRNAL=TEMP,

C

C
C S2ITCONGRO OPURATIONS
C

/INITIONI/ AOP012I'.1 CPORTI2I'i CPORTI COt(IISTAI
ACKAI,9STAB=l INIT=OfF ItCOT6~ SB't

/INOATAIONI/ ST AtO !PCRf=INPU(NU4BER) NUMBER-NUMBER.COUNT.0
POR T(OIINP(NUNB ER I,INOAf A.OFF

c RrSET
c/RSET*PflI/ CWORO-OINTI=OtINt2-0#tNT3=O

C STROBE ACTION
C
/STBA'*PII JI CPOATI4I.O,J9Ft-I ,CPDRTI5)-[
/STB"'PII I CPORT1 21-0 IBFB=I,CPORTI 11.1
/STBA#*I8FA*P(0I/ StBA-1
/ T98'*IBFB*P(I i STBA-1
/ACKAI*OBFA'*P(OI/ AC.KA I ,CPORTI 61-0

C INIERRUPtr LOGIC

C
C B*T SEIT/RFST FUCPION/CCTO)IIT

C
c/CSLO'*ICWORO(i ?) *CWt7RO(O)*SELO*SELt1'(Clt OO/SETC
ICSLO*ICWR0ITI')*ICCR(Ol)I*SFLO*SFLI*PIO)/ OO/RFTC

C OUTPUT TO 8255
c

/CStO'*"RtO'*SEtG*SEI*P(II/ CWORDOAhAS
./CSLCOWRLO'*SEL3'*SELIIOPI H I/' APORT-OATAB
/CSLO'*WPI.O'*SELO*SELI'*P(tI f PORT=O*TA8
ICSLO'*WRL0'*SFL0'*SELI*PI I/ CPCPT=OATAO

C
CC INPUT FPOM 8255

/CSLO''PDLO''SEI O'*SFL I'*PI I$/ rO4AA1ORT
dCSL('*RfLO'*SFLJ*SFLi'*PII)' O&TA1~z8PCRT
dCSLt'RMtO'*FL0'*SFLI*PIj/d nATAs=rPnRY

C
C INPUT ANoOUTU nup FQMINArjnN

70

C /(SI.O 'P{11)/ A ,BO(21) |

C
C * , *0

C ** I E OO N*IT U E

c
C 401 AC I S L S9I AN I XRI URI CPI mVi
C /Mfl)*T141*P I I R F I)Y IIR (I I.fR A.I P 6 1 1 OP II / 161 L AT CH PCe

IMI2I*T(21$P(H*RE'AUY*((RI ?).EPA.IR(611 'ICP3('l/ HPI=O

/M(2 1 * 1 3J1'Pt I PIREA JY I I 1 .)R P&I RII I) 4:P?(6 1 1 PC AI ATCH,

C RtC RRC PAL RAR
C

/M(I I*t(4)$P I) *READY*C)IOI)llP(7)I X-n Y=1
/4(1I t('4IP(I *R C Ay iVtUP I IDI t)0P2 0)*'iP3 1 7I1 A' - A -O1-A(I ,C tPRY A(7
14 I11 T* (4) s PII)tRE DY*OPlI v, J' r2 II)* '3 I A A II -AIT 7-II ,C P - -. I
/4(I (41(I*P)$REArIY*IP I*O*UP 2 ,F- s lip 1I 0-b- j-C6YtCt Rt31AI7A
/Ml I IT14)*P(I)*R(CAI)Y'O]P I I'tIP2 H3I PATPtII -C CPRY -A(7- I IC.RRY-A(O

C
C OAA CMA STC C mC
C

/4(1 1T 14 1 # (I * RF A0Y~ll(i 0 01P IPP 2 yF CI I THEFN
/9-I -A.ASD.6,1E+A.6) SE Ir (A3 -0 .F.IOf THFN
(A'A.AP().6, INTF A.A.)D.6 f,/4(lI1 0T (5 1*P(IL)*RFA;)YI)PLI (I I OPPi 0)*.) 3(71 rl I. , l X -0,Y=l ,
IF I CP.RRY. O.I) ITHEN (A-A.&r)).).', I'NT--A.Ar .)6 1 E I SE

IIF IAt 7-41.GF.10) THFN (A-A. A^ .),' Af -, IN I F A f . 9 61L SE
(IF JA^7-4).FQ.'"j THENIIF (AII-1I.GF.IOI I Hr

/Mill'l(41*P IIREAPYUPI(II$flP2(0 ''I-3)) Y''J,YTI

/mI I 1' 3 *P('E"tPI Id??'P1) (A 0V-
/Ml(I I (4)$P(I*R F [Y tP) I (tI *UP2I(3) sUpAfT I L CA P r y P AY

C
C ANA XPA ORA CMP

1MI 5 1 t*PI 1 9 1NY'fP I iS ''RI-F I X-O,Y-?

IM(II'I(51 #I I I'Rf A[Vycqtir ?L'I'I1f vIQ A.
/Ml (I I 1 51 'P I I I R f y C P I UP 0 2 1) 0 1 L 'I A*P. iA IP
/Ml 1 1 5 #P(IIPF Y*UPI) P5) ,P1 .. A. 1 MP
/M I)I T 5) P(I* FA-1 F A PI I I I 213)'-" 1' '3 IF (A.F .I P I T TiFN I FPO I I

t IF (&.LI. tP 1 t(N ((A YV-1I
• IM]I TII *PI IR AD~OPI S)/ X-4,Y:l

c
C AnV ATC S(4R 538C

i1) I 11 41' P II' I AY t CP I (41 TIC! S VAL
/ I 1*5'P(I 'IPFAY"(JP'1(4 "'REF I X 9,Y72

I4 (I I) P I) E AT r I (P 4) * EI'! If , Y I ISI
/1 1 it' *P 1)1' 1 P I I I I *I P " I (.) f'U 1 .? AF [A . I0-',

IF (I 'rI * 'f f 3') 1 (IF I ('' 1 1' tfO 31 1 1 II N ((. ; Y II I F
I C A PP Y) * I F P AL - A. A r)r). TE P,
(F I Itif 4 'II ''l ! ')') , (111 4 ' [)ri M' .I THIN IC Y I I 14

,
I(y I-)

iii

1M4(13*1151 #P I I3R I AOiEA Y Al' 1 41002 VI 11 F , A 11n I rFP4)f .Ct.P Y,
IF (I A. !) . T f T I I3 F. Q. :F F I l3 N IC A R Y I) I SE

(IF I IUT 1*UF 2 1 3 ' 11U I * 1 2 ,*!I 311 1 WN IC. A PY I I Fl SE
,CA3RRY0 II N,,t l- 'AL . I. IMP.3 ! Y
IF (I A(3-91. A0)II P13 3-0 F. IQ. :I I 33 N (3Y I - El SE

(IF 1 F A*Uf*F3 6' 1 43(39Fg'4 5' " U! -3I 3I F I l (' YE ICYl-011
/,4 (II*T 51*P IIy1 R FA)y r!P Yt I' I F 32)#0UU - .2 '". VIi,4P,

I NI ErNAL=A.S L'. IF HP,
IF (A.LT.IF4P) THE N I(PRRY I3 ElSE ICAPRY-31
IF I&(3-0).LT.tI (3-0)II THIN (LYI=I F I S[(A!Y I 0

/4(13*1 15) OP(I)*RFAUYO (t l I0'P3 ,,'.Q F. I F ,+. Sj1P.IF ' 1.1t F.t",R IY,
I NT E P NA, Lt- t. S',IFA. $ P S0 P-CI A RY
IF (. 1 T I I . P.'-. - - 'Y| 1.-3II AN I A: APYl I FI I ('IYA:
IF I At 3-3).1L T. 1 VI ' I -3.tJP.{I V IN!{P (3 .YI -I I3 F15 ICYI=O)

/l (3 1* T I I I P I II#R F A) Y P (4 I / X-4,Y-I
C
C JMP JN1 JZ JNC JC JPO JPE JM JP
C (ALL C N1 CZ (NC CC CPO CPE CM CP
C PVT DN7 RZ INC PC PPO RPE RM i-P
C
/M(I I*T(1 *PIIIfrF LDY IPI (61*(0P (03'TP3(33/ X-0,Y-?.P(O3-l,AL-AICH=PC#
/M1 I I * T31 * 1 * t F Y*3p3,,il 136) tf)P2FI n0 P i(5 JP3(I)I/ X-31,Y-2,I1R(OI-O

/R23 I,IF IF1 31 ';I IIt-N I L LIC - PCI FtSE 3A3A3CH:SP SFACK 1

/41 1{ 1 34314 1 *P3 I I* . P (.6) .102 303(0 I O _3F I(4 [1 #0P3(21 4UP0 / F 1I IF
THEN IX-9,Y-7,-P2 1,1 1 3A.P A(I'PFN AtA3CA-.P ,.T CK-l
IUSE It&L AI(H-PCIII ISE y,-0,Y-I IA I."IfiYd FlI 3 33 -1 PC' p IC). 2) I

/mI I I* FF4 I 1 0 -A, ,Ir ' I F I 2(I) -:31PA (41 i' 321 I UP I / IF F Rol
THEN IX -Iy- ,A2- ,13 300f3393lll31t Pt,.! 1C33SPIC3 -I
FtSE IAL A I1-PCI I 3 ISE x-0 Y I I (3- D) I 33 N I ;C-PC.&A [.23 1

/l 1 T,1 4 1*1 PI ,RI-R[13 *(3'1161 2 23l u '3(4 +[-1'3(142 ' 30 1r) I/ IF t(L. kRY'
13HEN IX-0 Y-? tR2-1 , r'l 331033 1Tilt) N A -A1 C --,P 5 r Kr -
I SE (ALAIC I fI 31SF I X -0 Y=I! IF I (I;A C I Ii-N 3'CI rc -PC A .2)-

/M I I P(I I It R(I3'f1 , " I' I f, I*OP 2(314 - , 31.3 I,'A, I' +' 'P32 3 1 IF I(CA 9Y
I433N lif Y-2,"R2 -I, IF 0It 3113I(11 .N P3 IPI 4 .", TAC. 1
I3SF I ALA CH=PC) ELSE IX-O Y-I IF 3330l1' tliON 1' -PC .'1f.2 1

/(I 3* (4 P I I 3IP F Ar Y 1 7 73*OP,2 Io0* # I'3 (4) 4I,1' 3 # f 3P/k3(C)1 / I I IY' I
lOHrN x - 1 ,Y=2. 3 ?=1,Ir ILIP ?101 111t'(AtA I(I H - S . IACw-I)
f3 SF , A l AIl (33' 3 L SE I X-0 Y I I F (I , It 3 N I I ,:N Ir C- PC .. 0 .?1

/4(1)*T14 3*P I kEA'Y1OP II I (OP "02,1 13 -1 3I "31. 3323.F)) Oj / IF I '.rQ I IYI
T iiN X-3 Y , MR 2-I,IF toP3(IIIII q' I 6I_ CA4- SP TA[, "-
ftSE A AI()PCII F1SF IX -0 y I, IF I3 '3' (cj i I!N 1pC-P(-.nn.. 2

/ (II-I(43 *t{I)3*REA[Yv 1'j1 ')*I"P2 121*I3 1 l ' I 434C 2) 3 tlr3't'I / IV 3 S3 N I
1 sli4rN (X-0 Y-2 .MR?-1 ,.- ! 1(UP1) I3 ro ' ALfIC4- ,PI V Y Ir
I S F 3 At Ai CFFPC I33 F LSF I X- 0 Y-- I IF (,I' I(0i I Tp3' N c 3 ~ A('C n . l?I I

/1 1I ,F 41* I *PFAD3YsnP I3 13*i 1 I3 - 3!3 4 1 41V3'1 2)/ #3 A3I", II
1 I N 3X-O Y-2,MP2 1 1, IF (_1' (A)l .) I I - 'P IS AX I)
3SI I PtACIA-tiC I ItSE (W Y- I i 31.1W') H ' PC . t Ii i !'.2 1

/'A 1 3 11 33 31 3 PI II)* -RF&PY IR I I I IP I 3 I ' 3,I ,' *, 33I / I'C '; ? [I I 3IP,
P-0 Y-I, IF 3I0333 1')I l33 I 3 ,- SP.A- fl.?,n TAL K 0)

/ 3 1 1311 P3II 3 PEAfIY * 1P 7l 3 11ff, I tlP3(4 1/ W' , FA;It' , I7 1 4P,
L A I C II, S P .ItH' CI Fl' - I X P-),Y-4. "'WI+- I TA(F --I

/0*34 "*1 331*3(II *P ,AtY#I 1 7)'I PI - 3r 1 1 4 / AtA l 4(H- AtA 1 .'.l". ,/T11, (13 M1111 iP 1A~ 17 11 0)(? y I , wI=

S IT f.C v 0)
C
C 1'IX 33 1NX 0 l0 X 34 ltIT x 'P
C Ic' F A 1 !)(X IT 3I, X 4P
C

/ (({,mI , I3 l-'.A13 Y333rl('3 .. ',3{ 'F, f A I- 3 -. 1 . 'IT.

T 1 1 1 1ADy* ;'If01t0P P 3 , T F (II4

I i) T 4) P I I J Pf A 4 UP II (W 2 ?) OP 1Ii f AtI (, 1-1-- F|. L I oNT.
/'Y j I.7y| r' I I 'A) AT,? lIPl : !p " i) '21 U P3(3)1 I1 I I I - ' . f LlNT.
/F(1 * {)DI1 ~ t U IY* ()1I| IhiPI I*UP3I 3) I t 1 (-11 13- s. UR .

/M (I f)41 I4 1P I I A~ VY I"') I I *D 1' 7 3) P.ll3(3) Alt A I(Il-[O P f ~ .
/4(1 tT(4 , P 1.) *REA 0Y GPI(I}*iJ'21 I L) 1P3)3)f A I 11 -I . UR.1
/4(1 1 (',)P 1 I* EAlOY liPII I I* P2) 3 1,'UP3(It) I f.I I1(P. 1!q.I
/ I. I * 5 P I PfA)*Pf CY*UPI dI *UP (0 1 4U1 1))'AI i 1 l A Y=

)' AL t I(H1 15-s) CLIII(1-0)
/MI 1 '(51*P(I I*Pt Al0y*UJP 1IOIlIOP2I 2 10P2(I 111'3(3 / X 0.YY=I,

[I AL AI C i 15-, A F = A LA ICH) 7-0)
/KI I)*T I P I R)*l. FA y UP i * iu7P2I-,0)+ur'2IP I I IP 1(3/ X 3,Y3- I

ti- A 1 A ICIII 1,, ' 8) L-ALA Il C H 1 -01
/'4l I eI l) P) I F 8A iy *LpI I j*fln2 2 HP?(3) 1 1~~(31 / X 0.Y -I

,P- 6 L AI C H
C
C Il X LXI D LXI H LXI SP
C
/I(I)*T(4) OPt I }IR(fADY*(0P1 I 0)OPI I I I(1(0P 0}1'UP2I 2) | UPl(II/

X=O Y=2, ALA IICH : PC 4'). 2 HfIR2=1
/M(31*T(3)Of I I*REA:)Y']PI(101 OP21 0 r,31lI l X-O,Y-IC -1l P,B-Dh) IIUF
/M(13 l)3*1 31 * P I)*PA vy Pl l0I*nP? 2)*OP {M 11/ X-0,Y l ,F- I P,[S fT) .UF
IM431 #) T) 31*1') 11lR A.Y#UP I I *CP2(C* I'3 Ill X-0,YIL I: P,H D &I 4PUF
I () I 1 (3) 'I'l I1 RF A1)*lPII I -0P2 1 UP 31 1 0 Y- Y- I , , SP 1AIAIU -fTfMP

C
C STAX I STAX 1) [IAX B ICOA X n
C

/ l' ' lI T 41t PC I) *lP "Y.ty, l () * !J '() I (L P2 I I :b P3(2 l X - O,y'2r , 1 l MP=A
/ 1 1 *l 4 vI'(I I Ik t 6YEt y-I P) 1 0J) ';1W2 I' !l 3 121 1 ;.I Cli - -c , 'h'I
/M) I)* 1 I 4) P 1)l' & Y-t!P1(JI#0V12)2 1 '11P 3 2)1 At AICIl 0-!:, ,'w -
/-A(I, T# 41 * VI I I* P t. ,'y'mI++PI nO *n'P2(l j*t1F3(t ICH R

M'R I 04 IXOY2

MRI1 ,X-OY'2
/I Z (2) P t I I"P fv .Y I:p1 0) 4 |UPZ(I I +IP21 31 ItP 3 2 1/ 1R
/M12 1*1 (3 *P I) RAr)Fy*(IPO1 0 1'(,I,? 11 till'? (3) *1 3(211 A A)A A (t *X 0o,Y=1
/M(2 11 3P tP)*RFAOY*C.PI 10 I016P2(0 1U212) + ('(UP) II / -0 Y-IC

c PADO B)Ar) 0 DAD H 0 AD SP

/ II *T 'lt,4 Pl(I}*RE&!)Y-npj I l {OP2(I (I OP3| (I ralICH - -C
/M) IOT 1 4 0) I * RFAIIY'UPI.(-J * P2(1)OlP3(I I AAICH- D-F

/N)),(10Tl 1 I *8EArPy CP III u) *up13.10r$)3 1 /l A~ L ICH=l-F

/4C 1 *1 (41)T PI)' Pf AI)YlilPI I(I I) 2 (r')[.0 A / ALAICH- SP
l PtII I)l 0 ' I o) *A Y*)1P l 0) Pll))) 12) II pP1 I UP 11) '.i'*)II/ -

IF ((OF 701l l F*L 9.1 * I 1tf'I l ' O11 J)) I 1 i llN IC Y 1 y- I II ',F

I3)-'! ' 1 l l - I[I t, I ;() I 1 1 'l4 (1))2 f2 I) I2)-I A)/ - OY l
I I Al P, I c 1 9- I L A) A H Ilf)

C P'V HL T

I) I)T 4 1 *P) I F1)' Y I1) 71' 1 R 61 / IF (UiP 1(3 1 tP2 I) f(. I I tllr-N
(IILTA=" ,X-O,Y 2) f I ',IF/SA VAL)

I 1 1) P l (I)'RI A tDY I . T |) II I :1 6)* RJ f [')I 'VAL
I I 1) ' .)) Pf Ar) Y S * I Q '7 1y 1 P 1 , R I I X- Y-2l 2 * l l P I) tHLIf, PF, v)Y y Y 4c I I, rI"R rI

/"2.t(2 IP I HL IA/ WA IT II Pt 11y=0
/) 2 1* 1 2) P I I R1t Ar Y*)III e A I I 'e * I R I P I f UF

S I I2 i I I P I A. .I) I I I * 1 I 1.I

73

C
C INR HEIR

/14(1 1*T(1 4 1* PI I I I RF PY* TR 1 7 't "1I 1 A CP31t41/
I F I O 0 1 1 Ii 1 T s EN (~JT II PC)~ I

IF ~ ~ (O') I HN (C=C:(i JJ1T.: I f ".cfT~r
IF tfPDI TF N D-L9.(WUNT.,vl-.T'4.
I F I UP 1) 3 1 THEN E FF LUT. 4 I F.CTU
Vr (UTD4 I THEN [1=11.6(TNT 41TE - 41 1 UT
IIF (UPI: I T)H4 1EN (L=L.r,.uNT. I NIC-1 .TCUIT.,
IF (TjrD(61I THEN ('MREF=T,Z=uY-2I "ISF (xjy-,rLAGSLI,
I F (0UP 1T II THEN I A= A .C OUNT NIT EA. (UN T .

/" (1)*T(41'P(I IREA Y* IRL?)1*R(6)t* ''I05)/
1 IF TP Ma) T HEN 1F=T?.suP.T, NE-P.m T.
IF (U P') 111 THEN IC=C.SUB.1,T1 r=C .Sl 9
I F I(OP) 1 21 TilHl N I0= 0 . SUS . I , I N1 F - 0 . W13T . I.
I F I , PO 13T 1 THEN (E- FSUR . I, 1'1 E = F . i . I I,

I F 10,H'. 14)I THETN I lfI=H. S U8. I,)I N TE H .S 08 . I
I F (OPUII 11tHE N IL=L.SUA.ItINTE I.SU9. I)
I F lI , V6) TH FN MRIF-1,X-0 Y=Z) ftSE (X-O,Y=tFtA("S-1,
I F ItF'I) THE N IA= A. SU3. I, 1NE-A.S1.J ITI

/L9 (1 s 1T12) *PII I'R F AY* TRI 7 '*TRI6P*(0P3(4.rA'3(5 11 ,,Lr~o

IF TTJP3I 4)) THEN I fE'OfATAPUF.rWUUU T.I
ft SE I I f P-rlATTUF.SUP.LII 'Wll , ALATCH-HI-L

/M(1) -1 3)P (I I -IELUY' RI1*IR(6T I&I0P3I4T ;1P~ 51 1/ X=J1,Y=t .51 AGS=t

c fT'ST~m 93 PUSH a PUSH H PUSH Psw

x -o Y=? 2 Mt-!I S T AK-

/M(II* L)'141 *PI I PF~f)Y9'PLI *1P?2 *in '15 1,11fNp
/411 1' 141AlP I I *'RE AFTr*T,Pl I I I *ull2(0T'UP 3 (55/ 1 1P~
/M(I 114)*Pf II *Rfhr1Y*PI I 7) *JF?f2 *!.P3 t5/ 1 IMr -A

/M12TI1 31 P 1 1 *il A UV' TOPI (AWTFFI(I) TI;P2I I I Is.UP3I5I/fT(t1SP.SUiS.2t
X=0, Y=3, m 'it

/mt23b1(3'p I I)'FE tfUY*LI INP?3*IT 51/ 1 lNp~C

/M I12 1 T I I)* ;P(I IT*R S AD f 4 U P 1 7 1$ P ? 1U 2 I' l 3 (5 1 / T M '

P.111 T I I I~ * , & Y $ I I l i 1 P I 1)' I f;; 21 1' 1 1T "1 /1,-, -SF. 1 I
x-fl,y-1,STe.FK=0

C
C $-up B TIJP [) 5iTo I flop l5w

I) *14 1 ! I) [Ar)Y* I OP 11(6) ,U IT1 I~ T*P2I)
1, &T -$, 0 I Yii? , P

/~~~~IS -) 9SC AI 'r XL -T AT YT I ST * I V)T=O ')'P1)1fVUL

/LA 1 -T'T1 3) PI I I v I' fY l'1 (6) ! T'II(Il - I ' I. OUF
/M I) *T I 3) P I I R t I IYUP 1 (6) 'UT'? I)t$00 51 11 1 E - I I F

(.13 1T 1 [(') ''P Y''I (A' I I 1FJP I1 ')) TI UP 2. *. P'. Ii I- I' T'

A'l1')' T I l*A I I "P1! I) L l I (I A I I IY t, I I I' I~ I'.

74

/Ml I)* I R I I VP(I)tFAOY'OPI t I ItoJPZ(0OO(P 31 211 11 sT71 'I A I CItI 14- 1[mp,

14(3 1 1 31' f I *R 1ADY OPII (I)"* P2l2 J'OP !(I 2) T(M'0 , X 0 Y1

0/ (31 1 3 1OP II I -'P F AVY-PII I '1I OP2 1 +UP 213I 1 o1P3(2I/ x~o,Y=4
/M(4)'3(1I$tl'II*RFArYUPIll*IUP2?1 I+UP2I 3)) 'UP312/ X'2 Y-4

AI)'RUF ER = A IABUF-T EMP SYNC - I OBI N= l- mrMRIR DY
/M(4 1 -f I II P tI I *R FA OpII *0P2 0 1*OP3 2) T I P H ,A1tAL I 7A CGUNT.,

/4 14 1 T 3 1 II t RADY: ()Pi1 I W 0P2 I n fP3(2 X-04TY-5PXr
/mtS)*l I II *P I)* P A:Y(PI 1 t*P2 I *(P3(2 /zAAIJ,= Y=5

1~4 1 1 3) PiI)"P1 ADY*0PI I '11213F'UP31 (2/ A-DAi'i3tsr,x-O,Y~j
IM(51 1(3)*r(I 1$PEA0Y*JPI I I)'IP210)*) 3121/ xz y~I
/IMIASOT(31*V'I I*RE&OYV)r') I I 1 13P2U 1 OP31I Z iOA1AjRr,x-o,r~i

C 01 Fl NOP

/tII141 *P (I I t P fA)Y *Ci' I(I (JPZH 3j UP3(31/ 1,'3'I K-O,Y-I

C PCHL SPfiL XTIL XCI-4

IM(II)(4 1* P(fI lIFEAOY(UPI11 ?)'O2(1 O(P 3 (11/ PCH"A ,X~r),Y-l

IM I ItT 4 'P tRE AO''tI *O(1 I U33 -C 0 - f H 1 , -

IMI I)114 1*P (I) P[AflY*0PI (l)*OP2(O1*UP331I)I x
SIAtCK~ I

/M(31*TI3)*PI I)*RFAflY*OPI 1 7)'tlP1r2oIQP3(-4 L I imP ,IT- 1) A A4UF,IIi Pl'N,

/M(4 1 *T(3i*frd*RIA Y UPII 17)*,0P210)*0P3J3)/ 11MPHW;A1IdtCNAUIU F.SUP.I,
X0Y5MWI= I

C PST
C

at(drCH-ALATCH-.$U8.I,PW!=l
/'4 1I1(31 P(II*RFAOY'iP1lPI)v() X-0~- %r'P.' (j.

PC;-;;- 0-- -:,' ;0-Q :a-P ?W 1 1~41 IR 1 3 1 :-;0

C (PUT~ IN
C

/M) I I It1 1,1 t V I I'l Rthy*f I I 1 t((2) P P1 3) 1IP (3 1 1 AI(I' VC ,

I~' I ,Tl I) k AhYP I 1*6 2f, '(lt'P l1 IAl-0Pi P I 4rI "I"N, O I ,~
I I 1' hI 11 YNCA~$' l~ 1jI;3 f..P) / , ,~u , Il -- IFN, I(F,1I II I -(I PkNC-I *rn 2 1 1 1 1 1
S Y'IC- , tl I IT '("yr 0

1 .19 1 ': P I I I It y 1 V '21 - I' 2 I1 1 1) 1) / 7 y ,K 2 -I

y I)

r * .' Ur i- ',SI ~ 1f'4, R I G IN 1 41MI 4 1 1

11

C
IS I

M
ULAIE

'oufPUT LtBftlI,21=Y,X,A,DAYABUF ADDRUFFFR,INFNIT

IRP ilMP,SIAT,CWI)PnCPO Tt&P(JIr, INTIIlT?,NR*SWITCH IIN S T=ON
*SWITCH 2 NIT-ON
*'SW ITCH 7 !1NOATA=ON

ASM SOSO0 ME04
LIST

NOG ow OOCIH ;STOREE VATA
ORG 56

*INTERRUPT HANDLER ROUTINE
INPUT: PUJSH PSW ;SAVE A

MV! AP06 ;KILL INTR SIGNAL
OUT 3
MV! A,OBH '.KILL' IBFA
JU T 3
IN 0 ;RETRIEVE INPUT CHAPACTER
STA 0201H ;STORE IT
pop PSW ;RESTORE A

*El ;IRFNAhBLF INTERRUPT
R ET ;R131 RN
ORG 0100H

SETUP: El.I MINO~N ;ENABLE tIEROUPT
MVI A,09 ;SET INT2
OUT 3

OUJTPUT: LOA O0U ;tOA6 CHARACT-R
OUT 0 :OUTPUT TO POWT A
HI T
ORG. 0700H
Ow OOC2H *:STORrO INFO

PC=!±0100

*SIM 09

APPENDIX C

PREPROCESSOR FORTRAN ROUTINES

77

cccccrccccccccrcccccc CCcCCCCCCCCCCccCCccr cccccccccccccc cccEcE
CCCCCCCCCC Fo~RRAVSUORCIJTINE9 TITLE :A SM NT CCCC CCC C
CCCC CCCCCCC CCCC CCrccCCC CCC CC CCCCC CCCCCCCCCCCCCCC CCCCC CCC CCCCCCCCCCCCC
C
C
C DRIVEP ROUITINF FaQ CPOSS ASSEMBLER AND LOADER ROUTINFS
C
C

SUBROUTINE ASl4INT INJ .2*
I NfIGER H3 XHA145146,1H4 H 18,14499H14

14l 33, 144 , H451St44 6 .14416R H188 449
C /314ASM, 3HORG, 41l.LST4HN6NE 4l4N 5 G4H ~O4H
1OAEMN4N /TABLES/ 5U17,15i.SLIJ Z5),tB14,25OICLI144I,

NSU*NSLpNIBNCL ,NPN N Y, PSAVE9 AXPI1
INTEGER SVeSU,SLtCL@P

C COMMON /WORK/ SVI5OOIIl8t25OI,IN8I2501,NSV,NJT,NTR

C COMMON /DArA/IEHoIHOZ'403.M04HS,H406.1401,HI:HI:i~

H549H H61. H62 H 3,N64,'4AS,'66,H61,H68,H69,Ii1OH71
HI72

C INTrPIER 1401,14o2,143,1O4,H405,146,NQ1,HflR,HOq,HIOI,tt12v

78

*H?I ,H22,H23,HZA.H31,H3Z,HAIH42,H43,H44,Hi,H5Z,
*H53.H54,HSS,H61 .N6?,H63,H64.HASH66.H67.H6R,H69,

C HTO.HylH72

C INTEGFP A121)sPTARLE1300I ,STABLtl6OICCDEtl6)#ALINEISOI

C LANG;UAGE OPTInNS
C

50 WRITE (6#51)
51 F07MAIII .1

IF IAI !? I.N H ~3) GO TO 2000
IF (A(3).NE.H48) GO TO 2500
IF (All)) *FQ. H~qI Gn TO 21S0
A4EMPPY = *15)

C
C OThIER LANGUAGES MAY BE LCIAOE0 SY tNIERTING SELECTION LOGIC HERE
C

C CALL LODASNI1PTARLE)

C LISTIN-G OPTIONS
C

200 LISTITr-
REAnIl 1,

201 FORMT A?l AAA31
WdRITE 6 101) A
IF I A121.NE 45) GO TO 3000
IF (Al? .6F.H46l GO TO 300
LI SF IT= C

r
C ORIGIN OPTIONS
C

WRITE(I0 A
IF ((IEQ.H4?1 GO TO 400
IF IA12).NE.H34) GO TO 4000
IERC09, I
CALL V aLPrf0 I3)iNUMVAL*!EqCCO)
IF IIEtCOIn . 01 GO TO 4500
LCnJNT =N1JMVAL

C
C ASSF.401V ' ?JPRCUINES
C

400 WRrTE6,4ol)
401 FCD4AT(I ',/,25X.ASSEMqLY REGrNS HEE./I

IERCNT%0
CAI., PASONE It CrUNTPTAILFP IFOCNT)
EN11 FILE '
RFidINi 2

C
C PRINT 'VYmRnt l'&OLE IF nFSIQEC)
C

900 IF (lISTfr .NE. 1) GO TO 600
C.ALL PpIt (';TABLF9,IP0INT,IERQ3)
IF I (OINr .Eq. al G(I in ;)no

sol rU P4,r(T I , I li,' Symnm0 TABLE ,/
LIMIT I ("ON! /' 4

79

DO 50 I - ILIMIT,3

WRITE 16,902) STARLEII) STA8LE(I1I, STARLE112)
502 FOpRMAT

t
' '#IOX SYMBOL

1
1 A49AA,' VALtIE 1,14)

550 rC NT I NUF
C
. WlfTE PASS ONE RESULTS IF PASS NOT ERROR FREE

600 IF (IEqCNT .EQ. 0) GO TO 700
WPITE (6,601)

60t FORMAT1' ,//,25 x;PASS ONE',//
650o R E AD(2,6601 N, 6
660 FrRMAT Al,. A4,A31

WRITE 16,670) A
670 FORMArI' *A9I.9A4vA3)

GC TO 650
610 WRITE 16,6901 IERCNT
690 FORMAT(' 'v5X9I'ERCNT $ 'P141

GO Tc 5000
C

C PASS TWO PROCESSING
C

100 WRITE (6,7011
701 FO9MAT11 ',)/125Xv@PASS TWO#)WRITE f6* 7021
702 FORMATI' * //.IX.LC' pX*'COOE4 t4Oi1PRPGRAM STATEMENTS't/)

CALL PASTWI ILCOUNT#PTABLEtSTAB1IE ,RCPLISTIT)
END FILE 3
IF (IFRCNT .EQ. 01 GO TO BOO
WRITE (666qO 1 EQCNT
GO

T
C 500

C
C PREPARATION OF CARD IMAGES
C
C INITIALIZE FOR PREPARING CARO IMAGES FOR LOAD PROCESS
c

so REWIND 2
REWIND 3

qOO CALL IMAGER (MEMORY)
ENO FILE 2
REWINO 2

I000 WRITE (6,1001)
1001 FOP4ATI' 'I//)

C
r. SEN1 RrSIJLTS TO ME REAO INTO MEMORY
C

CALL LOOMEM (JN,JIJ2,q5000)
WPITE (6910011
r0 TO 000

C
C ERRPR MESSAGE POUTINES
C
2100 WRITE Ib,20011
2001 FCQMAT(1' '*

$ $ $
e MISSING ASM CARO - TER4INATING ASSFMALY $e$$$,#rgn Tn inna

25n(0 WRITE 16,2',01)
9sol FqPm,%r#(,,€e$$$ MISSING tANGUJA,E ASSIGNMFNT - TFRMINATING ASSEMB

rLy ** ' ' I

80

GO Tfl 50no

2750 W I IF 16, 2 TS11
2151 FURMATI' ,*** MISSING MEMORY NAME -TERMINATING ASSEMBLY **

CO.l
GO TO 5000

C
3000 WRITE 1,01
3001 rORMATP''**0 LISTING CARD INCORRECT -1 fEFAULT-LIST ****'I

GO TO 300
C
4000 WRITE 16,40011
4001 FOPMAl' '***ORIGIN NOt SPECIFIED - OEFAULT-0 ****'

GO T0 400
C
4500 WRITE 16,45011
4501 FI'RMATI P'0* $ INVALID ORIGIN SPECIFIED - DEFAULT *0 6#00*,

GO TO 400
C
5000 RETURN I

C
600 0 WRITE (6.6001)
6001 FCRMATI' $.10E,'***i END OF ASSEMBLER ROUTINE **,/

PE TURN
10000 STOP

END
CCCCCECCCCCCCCCCCCCCCcccccccccicccccccccc CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCC FORTRAN SUBROUT INE TITLE :PA SONE CCCCCCECCCCCCC
CCCCCCrCCCCrCCCCCCCCC(CCCCCCCCCcc CCCCC CCCCCCCCCC.ccccccccccccccccc CCC
C

c SUBROUT INE PASONE ILCOUNTPTABLE,IERCNTS

INTEGFR 4330H34 f#5 1H46 H4.7 II48,H49,H73
DATA H33 134 1445 46 W, 441,1G.48 149, 473)C fl!HA ?, 3HO;Gs 4HLI;t,4 N tE4HN ~G41H80A04H IM:4

C
CnmmON /'1ATA/I E,HO1,1402,t01,M04,N05,H06,140?,HO8,H9HO14I 1,142,
i H21,1422rH?3tHZA, H3 1 H329H4I,H42,H43,N44,t45IH529H53*
2 H54,H55,1461 ,H62,H63.H64,H65vH66:H6,1H6R,H6,4HTHTI
3 ,H72

C
I NT EGERI 1401.142 ,143,HOAH05,146,HO~tN08,409,HI0,411 ,lIZ,

0 1421 H2i,1Z3*H24,H3IH32,H4I H4j P1443,H44,HSI,1452,
*H53.l454 H55,1461 ,162,l4631 64,H6,146.,l6?.1466,169,
* 140,H471.1H12

C 1NTFCER OASSA(21),PTARLE13001
C

LC=L OUNT
C
C READ) CA') AN!) WPITS COPY ON DISK 009R PASS TWO
C

50 PjA!)15,511 A
cil FGQMAUAL,14,3

C P S (,r14FNt CARDS RFrINNlN, WITH 0 AN!) FLAG JTHF* NONRLANK FIRST
C AiJrS M, pROOS

C
IF I A If.0i3)GO to so
IF (111)NE.1 I GO TO 4.00

C
C LABEL OpflCFSSING
C

100 IF A2EH. 1 GO TO 200
1 F A:'1E1:31 GO C 900
CALL LABLIN tAI2ILC91ERRII
IF I E"RI.EQ.11j GO TO 500
IF IIERRI.Pq.2 GO' TO 600

C
C OPCOOE PROCESSING
C

200 IF A).OH9 GOT70
CALL PCOO ('PA'S5(4) ,PTABLE,LINCR (ERR?)
IF (lERR .EQ. I .OR. (ERR? *EQ, GO 0TO 60
IF (IEPR2.GE.31 GO TO 300
LC-LC+L (NCR
GE' TFr 50

C
C PSUEDO-OP opnfCESSING
C

300 ~jALi PCPSIIB(LINCRoPASSlfER Ae .10)Y
M
NYd

9
oOI

GO TO 5 0

ERQOP MESSArE ROUTINES

400 WRITE(Z,4011
4.0t FORMAII'...* COLUMN I Not BLANK OR COMMENT - CARD SKIPPED *l

,n Tl 5)0

500 WnITE 12,501) A12) A130
10t FORMAT[9'*"* LAP ~L '*A49AW, N40T VALID - CARD SKIPPED **&*I)

IEQCNT - FRCNT +
GO TO 50

600 WRITE 12;,011
601 FrIRMATI' **** LABEL TOO LONG - TRUNCATED TO SIX PLACFS ****'(

IERC.NT -IERCNT I
GO) TO 200

C
700 IF I (61 .EQ. H49) GO TO 50

WRITE f7#701
701 FORMAT(-***** OPERANDS APPEAR WITHOUT AN OPCOOE -. CARD SKIPPED 6*

IERCTrv - ItERCTN + I
GO1 TO 15O

A00 WRITE 12,8011 AM'.
801 F1)PNATI'*&*** nOrCOE 1,A4,# INVALID OR NOT FOUND - CARD TFRMINATEO

C ****so)
IFQCNT = IERCNT + 1
I0L TO fln

C
qon PFlIJPN

rccrCCcCCr~ccrrtCccctcrrrrcCCrcr~(ccCrCCCrccCCCCCrCCCCCCCrCrCrCCC

82

CCCCcCCCC FORTPAN SU8RCUTINE TITLE PASTW40 CCCcCCCCCCCcccC
CCrCC.CCcc .cCCCLCtrCCCCCCECCCCCCCC~tcrccccccccccccccccccccccccccccccccc
C

c SlIBROUTINE PAS TWO (LCO(NT,#P1AL#STA8LEIERCNT#LISTIT)
C
C

INTEGER H03

C
INTEGER PASSA1211,PTABLEIAO),STABLE(601,C00E116),OPERIOPENZ

c
C IV TALIATION

OAS'=2
LC = LCOIJNT
00 LO I =1,16

CODEII)RO - EO 2)0 O30
10CONTNEP) CEII4NdL

CRtlCAOEIMAG~fE FRO WSAL
50) ro (2911 A

IF Ifl'R AMMN. H03 GO TO 60.

Go To 0

C
C OPCOEU'P PRCEING
C

400 CALL. PODn (LAiNCR r'vPs, IEQLCCYD, 7000) IPPR2NMCO
IF I EIt2 :GO GO 0IY 4000

83

IF (IFOR7 .EO. 71 GO TO 5000
IF HIERR' .EO. 5) GO In 6000
N9YfIS = LINCR

C
C WRITE LC AND C(OE INFOR TO TAPE FOR LOAD TO MEMORY

600 IF (NAYTES .EO. O GO TO 700
WR I TL (3,61)N8YTESLCCOOE

610 FORMA 1 1 14,1 Z2)P
C
C IF LIST IS DESIRED, PRINT OUT LC. CODE. AND LINE
C.

700 IF ILISTIT FQ. 0 GO TO 50
IF IBYTES .NE. Of GO TO 00

PRINT LINE ONLY FOR COMMENTS ANO ZERO LENGTH PSUEDOl-OPS

T05 WPITE (69,101 A
710 FORMAT,(' ,tZSAI,10A4,A33

GO rO 50
800 MBYTES 0 0

IF INBYTES *LE. 3) GO TO 810
MBYTES - NRYTES
NBYTES = 3C

C PRINT LINF AND COnE FOR NORMAL OP COnESC

810 WRITE 16.8111 LCt(COOEIIP,-.NBYTESl
81t FOOMAT(I '04, 3(2X9,2II

WRITE 16. 82) A
812 FORMAT I ' v' , TZ.5A I' 19A4A3

IF IMBYTES .EQ. 01 GO In 900
c
C PRINT CONTINUED LINES FOR BYTE A-.O WORD) INFORMATION
C

WRITE l6s813) I Ofilli, i=-4MBYTES)
A13 FORMATI' 1 ,T1 3IM2,2I
qO0 LC = LC f LINCR

rr) TO SO
C
C ERROV MESSAGES
C
1000 WRITE (6.710 A

WRITE (6 1001) A14
1001 FURMATI' n,* * rPCf]DE '.A4.' INVALID CR NCT FOUNO - CARD TERMIN

CATED **9**,)
IFPCNT = IEQCNT I
LC = LC + LINCR
rO TO 50

C
2000 wPITF 16,7101 A

WRITE 16.2001)
2)01 FOOMAT(I '.*** INVA1I.D OPERANO ENCOUNTERPO - CARD TFRMINATEO 0

Co*.*' P
lCOCN t TERCNT I
LC z IC # LINCR

C

1000 WRITF 16,710) A

84

300t FnRliAT(I 4,106010 OVERLONG OPERAND f'4COINfERED -CARD TERMqINATED
C ****S')
IfPLNT =IERCNT + I
LC - LC + LINCR
GO TO 50

C
4000 W'qIFE 16*70O A

WR I rE 6v,4001
4001 FORMArI ''*** INVALID OPERAND -NOT PROCESSFnI***

fERcNr IERCNT + 1
LC = LC + LINCR
GO TO 50

C
5000 WRITE 16#710) A

WIRITEJ (6,500t)
5001 FORM4AT(' ***** ?VERLONG OPERAND - NOT PROCESSED ******I

IERCNT = kqC NT +
LC - LC + LINCR
GD TO 50

C
6000 WRITE N*~710 I A

WRITE 1 6,6001)
6001 FOPMATI' ' '**' LANGUAnF OR IERR2 ERROR IN POPSUB*44)

IERCNT Ik.RCNT L
LE =IC * LfNCR

R OUTINE EXIt

7000 IF fLISTIT *EQ. 01 GO TO 70I0
WRITE 16~,110) A

7010 PC TURN
ENOJ

cccccC C CCCCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCrcccccccCC
CCcCCCcFZC FORTRAN SUBROUTINEt TI IE I POPSUB CCCCECCCCCCICCC~ CCCCCCCCCCC.CCCCCCCCCCC CCCCCCCCCC CCCCC CCCCC CCCCCCCCC CCCCCCCCCCCCCC

S1RPOUTINE POPSUA ILINfRPASS# IFRR2,AvLC@COnE,4 I
C

INTECFP A121)*PASCcnEII6I
C
C USE LINCR Tr IDENTIFY LANeGUAGE

I IF (IINCP.NE.11 GO TO 1700
IF (PASS.FQ.2) no TC 900

C 08 PPflCESSING
C

100 IF IIFRP?.NF.31 GO TO 200
ITYPE -I
CALL. STflIN, (ITYPE,PASS,a161,NUMOPSIERCODI
IF (IFOCOO.CQ.LI GO TO 1500
IF (IFPC(JO.FQ.?l GO TO 1600
IEPR7 = 0
LC = I.E * NIJMIP S

C
C ns ~pOcrlsSING
r

S5

ZOO IF (ITERv'?,N.4) GO TO 30n
rEpcor = I
rAl.L VALRE IN 6) NJ4VL IE!RCO
IF IIERCOO.EQ. 60""TO 1~00
I F I IfQCUr).EQ.2 IGO TO 1600
IEPR2 * 0
LC zt LC NUMVAL
RE TURN

C OW PROCESSING

300 IF ItEQP2.NE.5) GO TO 400
1VTYPF = 2
CALL STPING tIYYPE,PASS,AI6INUMOPSv!EACOD)
IF ErERCCD.FO.1) GO 'TO 1500
If (IERCOO.EQ.2) GO TO 1600
IER02 0
LU I C + INUMCIPS * 21,

QEUR
C FNn PROCESSING,, ENDING PASS ONE
C
400 IF (ItER2.NE.6) GO TO 500

RE T LRAI

C EQU PROCESSING

500 If (IERRZ.NE.?l GO TO 600
1FCO

CNLL VALRED (A16I NUMVA. 1F.Rt0O
IF CIERCOO.EQ0.11 0O To 1 00
IF IIERCI20.EQ.21 GO 113 ISGO
.AL. LAf3F(X (A~ZINN(JMVALERCCUI
IF fIERCOD.EQ.1 H ato 1500
ti (IIEpGU.EQ.2) Go ITr 16L~n
!ERr2 0
RE TURN

00C, PROCFSSING

600 IF (IERQ2.NE.9) GO 10 700
IrRnoO = I
CAL VIEPrOEO~f (A6&UVAvOC9
If IItPCIf.EQ.1) GO TO 1600
IEAR,' 0
Vf. =NUMVAL
RETIJPN

U RSX PQ('.rESS1Nr
C

Too IF 11OR ME. 91 GO la 1700
IFOC1OO - I
GAkl. VALOFD IA(61#NUMVAL,IERCO0)
IF tIFRcO)O.FO.IJ GO TO 1500
IF liIE(lor.EO3.7) rTO TO I6'1

I-C It 4
PF flirP'

FIDELITY OPTIMIZATION OF MICROPROCESSOR SYSTEM SIMULATIONS. (U)

MAR 81 E T LANDRUM
UNCLASSIFIED AFITCISI13T N

86

C
C PASS TWO RnUTINES
C
c
C
C DR PPOCESSING
C

800 IF IIFRR? .NE. 3) GO TO 900
ITYPE - I
CALL STRING IITYPE,PASSA)6b*NU4OPSIERcon.COOEI

=E 1 IERC r)
IF HER? 2.Gto 01 RETURN
ILINCR -NU'4OPS

D.% PROt.ESSING

900 IF IIERP2.NF.41 GO TO 1000
IFRCOD - L
CALL VAIRCO 1A(61,NUMVALLEPCOOl
IEPRZ -IEACCO
IF hEARR .GT. 01 RETURN
I INCR - NIJMVAL
RE TURN

C
C OW PPOCESSING
C
100n IF IIERP2.NE.51 GO TO 1100

[TYPE - 2
CALL STRING (itYPEPASS.AI&INUNOPS.IERCOD.COOEI
IFRA? - IERCOD
IF IIFRAZ *GT. ol RETU'N
LI NC . NMOPS . 2
RF TURN

C ENO PqOCEkSINGt.END OF PASS TV(O
C
1100 IFNCIERR2.NF.61 GO TO WOO0

LINCR -0
REVURNI

S EQU POCCE!SING

1200 IF (IEPOZ.NE.11 GO TO 1300
LIPJCR = 0
IEUR2 = 0

- RTURN
C
C DOG PParESSING
C
1300 IF hIER' 2.NE.91 GO TO 1400

ILPCO = I
C4LL VALPED IAI1,hNUMVALIERCnn)
IEOP2 v IFRCOD
IF fir-RR. .GT. 01 OETURN

11 MU4VAL

C
r R-ST PPrv:F ING

87

14.00 IF I ERR' .NE. q) rO TO tRrl0
IEPCfl0 I
CACL VAIRED IAffI.NU'VA1,IERCO0I
IERO2 - ERCOD
IF INtIMVAL .GT. ? DOR. MUM'VAt AT1. 1) IFP02 2
IF ([ERR? *GT. 0) RETUPN
NUt4VAL NUMVAL 0 8
(OOEM1 199 1- NUMVAL
LINCR I
PE TOJRN

C ERRCR MEeSA~CS
C
1500 WQITE z,51
1501 FCfIAfI '*011 INVALID OPeRAND - NOT PROCESSED ****'11

IER92 I
RE TURN

C1600 WRITI2,1 6011
1601 FORMi AIt *** nPERAND LENGTI4 EXCEFEO - MOT PROCESSED *****$I

IEQQZ - 7
RE TUIN

10 R II Egl 21 7011
170 F0 P6 1*0*0 LANGUAGE (JA tERR? ERROR IN POPSUS 011
IEq42 -
RE TURN

1800 IE002 * I
RE TURN
END

c-CCCcCCCcctCCCCcCCCCCcCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCC~cCrccccccccC
CCCCCCCCrc FORTRAN SUBRODUTINE. TITLE 1 '?NAGER rCCCCCCCCCC
CCCCCCCcCCcC CCC CCCC ~CCcccCccircccccccCcCCCCcCCCccccCCCCCccccCCCc

SIRO~ NE MArE IME1IORY)

C SUARD'tTINE TO PLACE ASSFMWRLEt0 CODE IN FOQNAT CAR) IMAr.Et
C Tn RE Lf'AI)ET INTO THE COL LOAD MODULE

COMMOlN /OATA~1EH01 ,H02,H03,HDA,405O,H06,HOTNOB.HDR,HioNIIHIZ,
I HZ) ,H22,H23,H24,H3lH32.H41,i4Z,H.3,H4RH51,H52,H53.
2 M54,"55,461 ,2~6,6,45H6H67, H6Rl,H69,H?O,H?f
3 #H12

* Hi53 MHI55 M61 H6',t61,H64,H65 ,H66,H67,H6R.H69,
* HIO,H?1,I4?2

C
INTfrGCR rt'0E1161,ALINEISO)
flATA 1CfLON/*.'/

C

CC SFT INITIAL rrNSTANTS
C. ~ tV

15 ' I I 1
C F P T

88

C READ LINF OF COOF
r

10 PEAD 13 20 EEn-600) NBYTFS#LC#CODF
20 FU04AT(I2,149 1612IL - 0

IF IK .Q. 14l NEWLIN - I
IF INEWLIN .EO. 0) GO TO 300

C
C WRITF FINISHED LINE AND CREATE NEWi LINE HEADING,

1110 IF ItFIRST .CQ. 11 GO TO 150
MAX - M - I
WRITE (?tlO fALINEIII, 1=1 MAXI

110 FORMAT IA ,A4,AI,Z4t4AIql2#L3lZAI ,l211
150 !FIRST - 0

I SPLI .EQ. II I.C - LCISPIT -= 0
LCI = LC
K =0
14 9

ZOO ALINEII Hot
ALINEI - MEMORY
ALI 3NE13 H09ALt NE+,, 4 ,OLON
AL INE 5 LIL
ALINEI6 HIO

AL INE 8 HI
ICUMMA - 0
NEWLIN = 0

F TEST FDR NnN-CONTIGUOUS IC

300 IF ILCI .NE. LrI GO TO 1n0
C
C TEST FOR FIRST NIJnREk, WHICH NEEDS NO COMMAr I

40 IF ([COMMA .EO. 0) GO TO 500

C.
C ADD COMMA T F LINE
C

ALINEIM) HOS

14 M~
C A ONE 1YTE OF CODE
C

500 ICM4A . G
ALINEIM) =ICIJION

ALINEIM) - r-ODEIL)
ICI = ICI * 1
N. 1 4 + I

CrEST EP' I-NO flF C'OE STPINl ANO FPR FILLED LINE

C
IF IL .E.O. 'I8YTES) GO TO 10
IF 1K .NF. I'.) GOn TO 400l
Isp(. IT -- I

89

(,f Tn 100
600 "AA 14 -WRITE 1.',110) fiALINEIJ). I=1.MAX)

ENO
c C CCCCCCECCC ~ ccc ccc cccrcccccccccccccccc CC
c~ccrcrcc~cccCC~ CCCCCCCCCCCCCCCCCCCCCCCCCCECcccriccccccccccccccctccccc

SUEIRC'UTINF LCDME04 *JFJI vJ2 9')DIMENSION JN19)
DATA 110S,ICUM/ =,'
r(YmphN /rAPILES/ SU17:i1 SLI3,15%L81425O)rCLI4Ir

* NSUSL ,NLINCLNPNSTNSYNP AVE,MAXP,PE1
INTEGER SVSUvSLCLP.A1 11
COMMON /WORK/ SVISOOOniIIE 2501 INBI7S50hNSV.NIT.NTR
rtJ'440N /fl&T&i/IEHUt ,H02,HOIHOl.,145,H06,H0?,HORHO9,HH .411.412

I 14~21 ,H22 ,I23,124,13,IZH4H4Zd443,H44.H 51.14521H53.
2 1454,H455,H61 H62,H63,N64,H65vH6667HBH69#470,H71

TNtEGFR H4OE ,NOZ,1403,P44,MOS.1406,H07,H08,9oHI111HI2,
* 121:H127,H?3,H?4,Hl,132141,H.2,143,H44,H51,1452,

H P53 H54,1455tH6I*H16?,163,164,65,166H67H6A.H69#
H f70 ,H71 .H?2

fO tFO~ iENO=60Q0)A
LFORMATEAE3 I9A4, Al,

71 FORMATI '*Altl9h4tA31
IF (AMI .NE. 14011 RETURN
rALI SFPT(AIZ),tR,18.INR9Nl

0IF jI.GE.NI GO) TOe10
IF 10(~l) .EQ. HO08) I - I # I

IF 1 811.NEllGO TO 4000

CALL F4AMEEJNIS, E.41001
IF I JN(II.NE.1) GE) TO 50
GO TO 4000

C MEP4ORY

5l IF I JN1E U.F 1 R6 foll") *NE. H409) G0 TO 4100
r (INR I 4"'WEQ.211 OY. 80
IF I JI .LT. 0) GO TO 4000

OS0 1IF I I RE I#-7) .NE . 142) GO TO 4000

IF IN81I#1).NE.21 GO TO 70
J?-IRE 1.1)
I-I #1

Inl IF IIREI#3) MNE. HIA)l GO TO 4000

1=1+1

IF I 10E 1471 .NE. mIfi) GO TO FO
J ?=,J
S- I+7

90 IA4-IFrQS

9o)

C100 IF 41I+2).GT.NI GO TO [0
IF 1114 I1 .Nf. IAA GO TO 4000
IF IINEII 421.Nf.2) GO TO 110
SV(N SVt 1- 101
SV(NSV#21=JNI13)
SVINSVI3 ho
SV(NSV4.I 8II#2I
SVINSV+51=JNI11)
SV(NSV+61=Jl*JNI 3)*JN141
NSV=NSV.&
J1=hoJ1
I = I+2
I AA= -I CO
IF (j2.FO.01 GO TO 100
IF IJI.LE.J2) GO TO 100

110 1=1+2
GO TO 40

4000 CALL ERROR IIE.1,42.c5000j
4100 CALL ERROIR fiE,2#42,C50001
5000 RETURN I
'6000 RETURN
10000 S TOP

FN 0

APPENDIX D

PREPROCESSOR ASSEMBLY LANGUAGE ROUTINES

92

****~t**9 LD*SM PTAITLE)

%EOUR MDATE REGISTERS
%(OPFN ION4 OPENING CONVENTIONS

R~EG IN FOti
1. R?,ooRl) WhAO ADOR OF ARRAY PTALSE

?4nTVE CnN4STANTs rn PrABiF IN MAIN ROUTINE

mvc 2551256:R2lP1&8LE*255
mvC 5111256 9 2) ,PY4LE4,51
mvc I ?S56R2)pPTA5LEl-76T
mvC 102 3 AsR2). 0TABLE#11O23

10 SE
OS. OF ALIGN TO FULL WORU BOUNDARY

PTAFILE EQU
DC CL8#ACt 2O00
DC FCIZ061

ac F16' 1110'

Oc F11281
DC F ' 98

DC Cl 5*ANA 11101

o. F 2301

DC 1. 81CAL 3050f
OC F'2051

DE FC41 r.30S0'
OC CLB'CM O0
Dc F22524 350
MC CLqECMA 1000'
0or, F'1419
Dr. cLalcmr 1110'
or. F I f, 3
M. CLS'rMNIC 300'
cc Flln ?'

Dc CL9SCNZ 3050'
Df. F Itgo,
M. CLB'CP 1050'
or. fl?449
DC LA'CPF 30O0'
tic F1?56

nfC F c4'pr) 305(7'

DC CLOICZ 1050'
or. F1204.I
(IC CL6'OAA 20001
T) r F,390
OC C1BIOAO 1320'
or r 1 ?'
DE CL9109I PtI

oc CL800rP 12101
(Ic F'S'
0 c CLS'flCX 13200
Dc F1119
oC C L 911) 1000'
DC FI?43'

DC rt8'low P),

DC F251'
Oc CLS'END loo
oc FI?5'

DC CLRIEQU PtI
VC FIJI
(IC CI8HLT 1200'

DC CLO'N 2o0

XC CL1INP 1210'
DC F041

DC CLS'INX 13200

DC C18'JC 3050'
Pr F12191
n'c CLS'JM 1050#
DC F'.'501
OIf. rLi'Jmp 3090'

oC CLSIJN4C 3050'
,,r F'2101
DC CL8' JN1 1050'
PC F'11140
DC- CI..'JP 30950'
DIc F1?22
nC C18'JPE 3050'
OrC F'7341
DIC C LV JPO 3050'
DC '7 261

OC CIA'JZ 3050'
DC '2021
DC CLSILOA 3090'

I)(F * 9
(iC CL 8 1L OAX14 30

Or F4 10'
C CL tL 4L n 30s'

9 4

Oc rLB*LXI 31?5'
DE F I I
Dc C L 81 4fV I[st I
Dc F 164'
FJC CL A' VI 27t1
DIC F16'
DC CLS'NUP 1000'
or, F 10 f
Of CIADORA 1110'
of: F' 1760
1W, t'CPr P 1
r)c F 1 9
D~C CLA'&RI 2040'
DC F'2461
ac C18'OUT 70401
oC F021 ,
DC CL4'PCHL1000'

DL CLA'"OP 1120'
or F'13
Dc C NJPUSHtI120'

DfC C18'RAL 1000'
DC F1230
of CLS'QAQ 1000'

DC CLPIRC 10009
DE F17161
DC COq'QET 1000'
or. F17014
DC CLSI'R!M 1000'
DC F'32:
DC C1LO QLC 1000'
DC F174
or. CL8'U' 1000t
DC F'2'#Bf
Or CLB'RNC 1000'
DC F12081
flC CLI'RNZ 1000'
DC F'1IDV
Df. CLS'RP 1000'
DC F'2401
lic C18'QPF 1000'
DC F'232$
DC CL 919PO 10001
oC F'7241
Or Ct8'RC 1100'
DC FtIS'
DC CL8'RST PI
DC F#9*
nr CLR'ql 1000'
Uc F12001
DE CLS' S1R 1110,
Dr F'lSZ'
I~c CLq*SAf 1040'
QC F'222
GC CLA'SHL01D0n
Dr F I I %
Wy ~'I n~

OIC Cr *S;A 1u0501

rC CLIVSTAK1430*

Ur CL9'STC 1000'
0C F IS50
9C CLS,5UR 1110'
FIE F I AlItw.f rt8'Sll(7040'
oC F'1?141

oC F'235
or. Ci9'XvA MW
Ot F'168'
oC C1,310KRl ?101O
nc r I . Ia
nc C L 8'1.fTHL I nOO
IJc F 1271

[No rou A,
ENn LOrIASMa

//STE06 EXEC A314F *PPDP'NC'OECK,LP&DI
//AS14.SY511A 00 DW=NlE17D.M~f-1I66DlSP=SHR
11 DD 9SN ~SYS1.MACL~cs, ISP=5HR
/,hS4.syspq INJ no DtJ"4y
II&S". SYSGO DO DSk.n L(fJFf*T DIlSP (MCID.PASSI
/IAS4.SYSIN4 Do

AS4LPSUBROUTiE 111LE LM ILST #.*e**
Lapi -T cSf rI

EN4TRY I A5LtN,PRIN.-T,L&8FtX#(L&%QUT

RO~UTINE FQ~t RLAClNC LABELS AND vALUES INTO SYNMtCL tAALF
*LARU N IAI2IstCIFRPRH

ZPkBLIM EQU
SIM q~l'qI?.l?IRll) SAVE r.ENE~dL Rfr'ISTERS
LA Q17.0 IEE&Q EqOrfl COOF
L Q oblp1i toag ADoP OF LA'9EL

P 101YM3N(A)solu?) IOAD LASEE TO SYMAMN

T EST FOR ALPHAREYIC FIRS1 CA4AUAr-TVA

CL 1 5Yt49INf, CA, FIRLST CHAQACTFq A?
AL ERRINV INVALID IF LCW
CL I SV4PIN,'it FIRST CHARACTER Z?
IRNH FILL1IV PROCEED TO FILLUP IF NCT HIGH
, FOR INV ELSE CHAP INVALIO

*LOOP MO tOAD CHAVACTERS INTO SYMAOL

FILLLJO MV(SYhlPL(I),5YA@8N LOAD FIRST CHAR OF S'&4AN
4vr SVP4MM,11 71 ,0tANXS FILL Of%7 41TJ, PLANK~S
LA R4.0 ZEROi IN11TER
14 vq,1 SET INCRF4rNT

Uh

LA R9,5 SET LIMIT IN)EX
LA R9,0 ZERO RS

FILCOP Ir R5,SYMBIN#lIR4I INSERT CHAR FROM SYMBIN
C R tl F'I2? CHAqACTFR :?
SE fu' END OF LAsEL
pXH R',eR8,ERlONG IF OVER 6 CHAR, ERROR LONG
STC P5,SYMROLIAA) STODE CHAR IN SYMBOL
f FILOriP rET NEXT CHARACTER

* LOAD LSIFL AND VAlUF IN STABLEa
ruT EQU

L Q6,POINTR LOAD INDEX TO STABLE
LA RT.STABLE LOAD ADOR OF STABLE
AR R7 6 FORM TABLE ADDRESS
MVC 01 1RT)iSYMBCL MOVE SYMBOL TO STABLE
LA R7.8(IR INCREMENT POSITION
L 0394(RIP LOAD ADOR OF LC
MVC 0I(8RT1,OIR3 LOAD LC INTO STABLE
LA R6 121R61 ADJUST INDEX
ST q6 POINTR STORE POINTER
R LEAVE LEAVE ROUTINE

a

* ROjTINE TO SEND STABLE TO MAIN STORAGE FOR PRINTING

USING *,R15 FSTARLISH ADOESSABILITY
PRINST EQU *

SIN R14,RIZ,Itl3I SAVE GENERAL REGISTERS
LA R12.0 ZERO ERROR CODE

MOVING FOil
L qZ,DORI) LOAD ADOR OF STABLE MAIN PROG
mVC l(Z4UOtRZj, S ALF MOVE ENTIRE TARL
L Q2,4IR1) LOAD ADOR OF IPOINT
L R,PCINTR LOAD POINTR
ST P3 OIR21 PASS POINTR AS IPOINT
9 LEAVE

ROUTINE TO PROCESS EOU PSUEDO-OP

USING *,R15 ESTABLISH AODRESSARLITTY
LASFIX EQU

StM 014,RItt,2Rtll SAVE GENERAL QEGISTERS
LA R12,0 ZERO ERRUR CODE
LA P4.STARLE LOAD AOOR OF STABLE
L 06,P(IlNTP LOAD POINTR TO R6
S 0,=F'l

I
2' POINT TO LAST TABLE ENTRY

AR R4,R6 FORM ADOR OF ELEMENT
L P.',41RI1 LOAD AODR VALUE
L RZ,OR(Z) LOAD VALUE
LA R4,q(Q4 INCREMENT POINTR TO LC SPACE
ST '2 OIR) LOAD REVISEO) VALUE
q LFiVF AND LEAVE ROUTINE

• QOUTINF TO Ff0D VALUE FOCM SYMPOLS USED

tlipiG e.lDI5 ESTAPIISH A00PESSARILITY
LAnOUT FOU *

STM I',,'?.IIPIIJ SAVE GCNE.iL REGISTPOSI A 111111 lEpo Fpotu CnnE

LOAD APO LARNUM

41

L A P-, S IABLE LOAD ADOR DF STAP'LE
L R5.PCINIP LOAD LIMIT Of STABLE INDEX
C 054 IF 01 DOINYR 10 7
RkE El~ P4V if YES GI TO EPR !Nv
AR P'),R4 SET LI LOAORESS

SEEK EOU
CLC 0160,2),0104) COMPARE TO STABLE ENTRY
BE FINO IF EOIJAL GO fO FIND
LA 04,,12(R41 ELSE INAMT DOR
r, 9 R4 , st COMPARE AOOR TO L IMIT
BF FRRINV If EQUAL,' GO TO INVALID
B SrEK ELSE BRANCH BACK

FIND FQU 0
vA R, RIP4 IINCRFMENT TOi LC SPACE
L. 060R LOAD LC
L R2,41I LOAD LOP NUMVAL
ST RQOIA2I PASS 9ACK lEUMVAL
R L AVE AND LEAVE RtirtNE

*ERROR HANDLING ROUTINES

;-BRINy EQU
LA R12,1 SET ERROR CODE-I
B LEAVE LEAVE ROUTINE

ERLONG EQU
th R12,2 SET ERROR CODE . 2

*LCODFQRR CODE AND LEAVE Ro~flINE

LEA1E 1EOu *
t PA, BIi) LOAD ADOR OF EPOOR CODE
ST RI20R1PASS BACK ERROR CODE
Lt4 R 1 4R I 2tZ i ETORE GENERAL REC.ISTEPS
BR R14 RE TtRN

SYMBOL DS ID
SYMBIN OS ID
tfInNTR OF. Fool
BLANKS DC CLI'
ST ALE Or 240(t'Ll SPhCE FOU 20 ENTIRES IN STABLE

END LARIST

.I/STE 0
1 EXEC AS'IFC ' At0M=('NflCCK LOAD'

//ASM.SYSLIPI nO OSN~iEl)O.MACL~, DIsp=SHR
II01) !)SN=SY lMACLI ,bISP.SHR

IINSM.SYSPRI-IT 00 OUMM1Y
//ASt4.SYSrCO DO DSNDB.WJCT,ISP~Imc9DSS)
//ASM.SYSIN DO

4SSEMRLER SUgBrfUTI'NE TITLE ?CODE
I0D (ASS,A14) PTALElI N1CRl EPl2I

SE0'IR EQUATE OEGISTCRS

zkFGI WPENIBM OPENING rrNVFNTIONS
RFI)IU

L&~ Z1. FQO OFFSET
LA I2. a ERO Foocq ct'oE
(;1 ~ ?L E N ZEQrO LINCtk

L (0 Q2 IS PASS AI)OR

L 2,012OI2 RZ IS PASS
L R3,4IR| R3 IS SEARCH PCODE ADOR
L ph.fpl(R R6 IS SEARCH PCOOE

* ERROR TFST ANO OFFSET OTERMINATION
rEST CI.1 UI1,Cl' PCODE GRFATER THAN Z?

NH TEST? IF NOT. GO TO TEST?
FRRORI LA R1711 IF YES, BEROR COOE - I

B LEAVE LEAVE ROUTINE
TEST2 rLI O(R3,C'00 PCOOE GREATER THAN 07

RNH TEST) IF NCT, GC TO TEST3
L4 RIOt684 IF YES SEARCH BEGINS AT 0
B SEA CH GO TO SEAaCH

TFST3 CLI OIR3iCtGI PCOOE GREATER THAN G?
BNH IEST4 (F NOT, GO TO TEST4
LA RI,360 IF YES SEARCH BFGINS At G
R SEARCH GO TO SEARCH

TEST4 CLI O(R31 CoAl PCODE GREATER THAN A?
L F.RROPI IF NOT, ERROR CCOE =1

* SEARCH LOOP

SEARCH LA P.,30 LIMIT OF 30 PROBES
L R5,AqRII LOAO ADOR OF PTARLE

SLOOP C p6.0 RIOR51 COMPARE ENTRY TO PECiE TABLE
BE FOUND IF EQUALt GO TO FOuND
8L NOTFNO IF SMALLE P BRANCH OUT
LA RIO iZIRIO| IF NOT, INCREMENT POINTER
nCT R4,ILO0P BRANCH ON COUNT TO SLOOP

NOTFNO LA P12.2' IF NOT FOJND, SET ERROR CODE
1 LEAVE AND LEAVE ROUTINE

FOUND EU *
RARIO SUN BASE AND INDEX

LO R i,41R51 MOVE TO LENGTH BYTE
CLI 01R5)C'vP' FEST FOR PSUEDO-OP
RN E ONEPA. IF NOT PSUEOO- (P, GO TO ONEPAS
L R I 41R5 SET ERROR CODE FOR PSUEDO-OP
LA R5 ,IiPSI MOVE TO MOO BYTE
NVr IEN*3(If0IAR5i mOVE LENGTH TO LEN
N1 LEN*3,X'OFl CONVERT TO BINARY
L Q6,LEN LOAD LEN TO R6
L R41Z(RI1 LCAD ADOR CF LINCR
ST Q6,OP4) PASS BACK AS LINCR
A LFAVE AND LEAVE ROUTINE

* PASS ONE PROCESSING

CNEPAS LQU
mVC I EN9.3(I.OiR5I MVE LENGTH TO LEN
NI LEN#3,X'OFO CONVERT TO BINARY
L R6,LEN LOAD LEN TO R6
L R4, (Z(RI LOAD ADOR OF LINCR
ST RA, i(P4) PASS RACK AS LINR
C P2,=F'2' IF PASS=2
nE rw()PAS GO TO OASS TWO "ANOLING
R IFAVE ELSE LEAVE ROUTINE

PASS IWO PROrPSSING
0 oASS 'rK 'Crri, nPERI, rPFP2, %Nr NIJ'4t00
•

p - . -. - , -..- . -

TWOPfkS EQU
04On FQU

LA PSIPIADVANCE PCINTER TO MrD
4yC L EN+I hI MOVE MOn) TO LEN
N I LENAlIX 'O CONVERT To BINARY

I R6.LEN LCAO MCI)
I 1'. 204R 1 LOAD ADR OF MOO
st PA.O(R4) PASS BACK mOO

nPERZ FQU
L A IS,(R5 1 ADVANCE POINTER TO OIPERI
NyC LEN*,3111tDIRB LOAD OPERI INTO LEN
NI LEN.,IOFI CONVERT TO RINAPY

1 6. LEN 1oan OPEN I
L R4,24(RII, LOAD A0OP ODERI
sr Ri%,0(Q4) PASS RACK IPF.RL

OPER2 EQDO
LA R5,11R5) ADVANCE POINTER 1O OPER?
NVC LENO-3111,O(451 MOVE OPER2 TO LEN
NI LEN+3 XlOF' CONVERT Tq AINARY
L Q6*LE4 LOAD OPER

L R4,81RI)LOAD AOO OPER2
sr R6,(R4) PASS BACK OPER2

NIJMC LD) EQU
L A R5 :IIRB51 ADVJANCE POINTER TO NIJMCDO
L q6,0O1 A5 LOAD NUMCOD
L 44,3ZIQ 11 LOAD ADOR NUMCOD
ST R6,OIRA) PASS BACK NUMCOD

LEAVE L R6,161R1) LOAD RETURN ADOR
ST Q1 46i PASS BACK ERROR CODE

END Eall
%CLOSE 1B'4 CLOSING CDlNVENtIC MS

LEN os IF
END 0COnDE

//STEPS EXEC ASMFCPAR7s'NOOECK ,OD
ASM. SYSL I A0 DDISN=1E70.MAr.LI8,DISP=SHT
II 0 DSN=SYSI.MACLIfl, IP.SHR

//AsM.SYSPIJINt on OUP4MV
If ASM. SYSGO O OSN'ECCBlJECt ,O ISP.I MD,PASSI
I/A 5&4*Y5(IJ 00*

******9* ASSEMBLER SU8ROIJTINE# TITLE STRING

STRING (SECT
fE4UR EQUATE REGISTERS
$r)PFAI IBM OPENING CONVENTIONS

IFGIN COjU *
LA q12vO ZERO ERROR CODE
ST 412,FqconF ZERO EQOR CODE FOR VAtRED

0 SFT LIMIT BY TV"E
L P2Z0tflt LCOD [TYPE ADOR
t Q.),0(021 LOAD ITYPE
''1 01:2 STORE (TP IN 09
L', olIE 110A LIMITFTO Q3
ST R3*LIMIT STORE LIMIT

r. cp =Fvjv TYPE z I ?
;F TFMTT I F YES,,,fl TO TFSTIT

LA P119 ELSE 'JE L Mir FIJR wnanS, TYPE
ST 'i.tIMII 'T('O)F A' t(m(T

I ())

I INI ALIIF RY PASS CODE
TESTIT EQU 0

L R,R|RI ! LOAD ADR OF POSITION
P1,41PI LOAD AUOR ASS

L q3.O(R31 LOAD PASS
C RzFhtI PASS - t
BE IS INV IF SO, GO TO VALIDITY TEST
L RIO,zOIR[F ELSE LOAD ADOR CODE
LA RIO AND LOAD INOEX TO CODE
ST Q?,AOOROP STORE POSITION IN ADOROP

0 TEST f IRST C HARACTER
TSTINV EOU 0

CL I IRt'3.C' FIRST CHAR BLANK ?
91F ERRINV IF YESi OPERANU INVALID
CtlI OIRZ) rt''' FIRST CHAR @ ?
IAE OUOTESl rO TO STRING PROCESSING
CLI O(RZ)oC',t FIRST CHAR I ?
RE ERQINV IF YESo OPERAND INVALID
LA P461 SET COUNT TO t

* MAIN TEST LOP
COCNT EU

CLI 0112)#C' CHARACTER BLANK ?
BF DUNE IF YES, GO TO DONE
CLI OIR7|,C',

4
CHARACTER 7

BE UOONE IF YES, ADb ONE OPERAND
R [NCR COUNT NEXT OPERAND

* IN.CEMENT AND LOAD ON PASS 2
IPONE Fou

LA RP41,l
0
A INCREMENT CPERANDS

C RR,LIMIT LONGER THAN LIMIT
BH ERLONG IF YES, GO TO ERROP LONG

R3,1=FI' PASS - 7
RE INCR IF YES, GO TO INCRSUBROW} EQU •

LU AT RI ELSE SAVE RI
CALL VAL ED*IAODROPNUMVALtERCOOE 6 VLRtR t

0E,Py RESTORE RI

L Q6,EPCUODE LOAD ERROR CODE
C R6 =FO ERCOOE = 0 ?
BF PASAK IF YFSt GO TO PASRAK
C q6,=Fl| ELSE ERCODE - I ?
BF EQ'INV OPERANO INVALID
B ERLONG PERAN) ONG

* PASS ONE AND TWO PYTE VALUES BACK
PASHAK FOIl *

L 16,NUMVAL
C Rg,=F'2' [TYPE = 7 ?
BIF TWOBYT GO TO TWOBYT LOAfING
C ob,-F'15,' VALUE > 2SS
5H EPRINV IF Yr'S OPERAND INVALU
ST R6 , .IRII RIOI ELSE PISS IACK AS CODE
LA ptI04 (RI 1) INCREMENT INDEX
LA 02 , 0121 INCREMENT POSITION
ST P2,AORDOP STORE POSITION IN Ar)POP
F. IP.=F'L' LAST OP FLAG - 1 7
F f)NWJC2 IF YES, GO TO 011NF7

I rfl iFNT CUNTINUE
TWLICY T F0I1 0

R R6,=FAh6€;I, OVFR TWO BYTES?
fl ,P IT IF t UW, .n IO SPL IT

1) M

S f)6 . F I 0553A' IF HIGH, SUBTRACT
R TwO AVT LOOP RACK TO rWOBSYT

SPI IT EQU 0
ST R6, NUMvAL STORE NUMVAL
NI NUMVAL*Z.X*OO' ZERO UPPER AYTE
L R?,NUMVAL LOAD VALUE
ST Pi t~ Riot PASS RACK AS CODE
LA qI1RI INCREM$NT R11
L A P1,0ZEO
ST RT,NUMVAL ZERO NUP4VAL
ST R& , PAr E STORE NUMVAL IN SPACE
mvc 'UVL3lSPC2 LOAD HIGH BYTE
L P6,NMVAL LOAD BYTE FOR PASS

ST R6 IRIt RIO) PASS BACK AS COOE
LA RifINCREMiENT RuI

L P2 IRZI NCREMENT POSITION
ST R2pADnROP ITORE POSITION IN AODOP
C Rs.F$I1 CHECK LAST DP FLAG
BE UONE2 IF SET 9 EAVJ ROUT INE
a COMCNT ELECNINtJ

INCR EQU
LA O2,1IR21 INCREMENT POSITION4
9 COMCN T

* COUNT NUP4BER OF CHAWATERS IN OUOTES FOR STRINGS

QUOTES EQU
LA qZ9i(R21 SET POSITION
LA R'.,O SET CHAR COUNT TO ZERO
L A R9,O ZERI) R5

COUNT EQU 0
CLI O1R2IC'f' CHAR'
ME DONEZ IF YES- END OF STRING
LA R491IR41 INCREMWN COUNT

C A RLIMIT OVER LIMIT ?
RH E ENGIF YES* GO TO ERLONG

C Rle-F'j* PASS - I ?
BE ADVANC GD TO ADVANC
IC R~ORIELSE LOAD CHAR IN R5
ST PS DIRI RIO# AND PASS BACK AS COE
LA RiL4(Rill INCREMENT R!I

ADVANC EQU $
LA R2.114R 1 INCREMENT POSITION
0 COUNT LOOP qACK TC COUNT

DONE ETOU 0
C Q39 F'21 PASS =2 ?
RNE OCNE2 IF -NOT, WC TO DCNE2
L'k Rn.1 ELSE LOAD LAST OP FLAG
q SIJPOUT AND GD TO SUROUT

OPNE2 EOtJ
L RS*I?(Rt) LOAD ADOR NUJMOPS
ST 4..OIRP) PASS RACK NUMOPS

GONEI EQU
q lEAVF LFAVE ROUTINE

F PQflP 1,OU1T I'ES
ERR INV rQU

LA P12,1 SF1 FROOR CODE mI
n Lr&VF PINO LFAVF oCIJTINF

r~t(N, F Q)
I P '2, SET FQOOP CODE 7

IFAVE FOU
L 16R Ira hf)O AR0 ERCODE

'T 00 0(08RI PASS BACK ERRCOR DCDE
SCIos IBM 01 CLOSING CONVENTIONS

LIMIT 9 f I F
A OOPC cp us I F
NUMVAL f) S I F
EOC0L)E Ds IF
SPACE us IF

END STRING

/ISTEP9 EXEC AI1FC.PftRM='Nt)OECK LOAut
//ASM.SYSLII 00 0SN=IEIf .MACLI6,91SP-SHM

U 00 f)SNmSYSI.MACLIA,flISP-SHR
//ASM.'SYSPP [NT 00 DUMMY
I/ASI. SYSO 00 OSN=E&flBJECT .DISV-I MnOOPASSl
I/ASf, SYSIN 00 *

ASSEMBLER JUBROUTINE6, TI [LEt OPERAN

ORERAN CSECT
SEQUR EQUATE REGISTERS

$P EN
I RM OPENING CONVENTIONS

* RErIN PROCESSING BASED ON VAtUE M~ MOO

,PFGIN FOU 0
LA RI21O ZERO ERPOR CODE
ST qIZERC DE ZERO ERROR CODE FOR V4LRFD
L RZOIRI LCO ADUR OF MOO
L P2,OR LOAD MOD
C R2j2F'O'02 MOD 0?
BE -DATA IF YES, CC *O DATA
LA RI ET MOD5 PASS FLAG I
L. P43,1iIRI? LOAD ADOR OPERANDS

* READ REGISTERS AS OPERANDS

;QFRFG FQU *
MVC_ REGIST14IBLANKS 9LANK OUT REGIST AREA
LA RI4,0 ZERO INDEx
1A qR,,O ZERO RS
LA Rl',I SET INCREMFNT
LA I?, SET LIMIT
LI OIR3h#C' f f[PST frI4AR BLANK?

9E ERRINV IF YES# CHAP INVALID
IFGRFD E'QU

IC R5,O(Q4,R3I INSERT CHAR INTO R5
C Q5,=F'10OV CHAR z 7E
9F FINISH IF SO, EAD IS FINISHED
C QS),=F'64' CHA9m A LANK?
IE FINISH I F YS, DUNE
BlX14 R4 .0 tE QLO NG CvEP 3 CHAR , Trc LONG
s;r (Q5 REGIST-'IRP4I STORE IN QEGIST
R QFNED CPCT NFXT CHAR

Aq A , 4 1JODATE OPERAN LOCATION
IA 11.14011 'ilVE PAST OFlLINITFR

* SEtECT OPERAN) 1.1ST By 4nl TYPE

C R.Ph ~F 12 Moo 2 ?
a" pa 3 ~ IF NOT, GO TO PPOCI

PROCd2 FQU
LA RS*LISTt USF LISTI

Fj SEARCH GO TO SEARCH
PROC 3 EQU

07.-,F
1
3
4

MOD - 3 ?
1~4 PRCYC4 IFeCG T R4
LA R5,LISr2 usE qI TO RC
a SEARCH GO TO SEARCH

PROC 4 EO
C R2,.F#4' 40OO 4 7
RH PPOC5 IN, DTO PindS
LA RLITUSE LST

PROC5 EQU
LA RSI ISTI. USE LISTI

* SEARCH nPERAN? LI 5? ANO VIA1'H T~FIND NUMBER VALUE OF REGISTER.
6 FAILURE TO MA 1CH NINCATES AN NVALID REGISTER

SFARCH EQU *
CIC REGIST441,04RI) COMPARE REGIST WITH Li1st
BF FOUND I F MATCH AGO TO FOUND
CLI oRS1ICZt LIST ENT Y - Z 7
qE ERR [NV MAfCH Nut FOUNIJ
LA 95 "IR5I INCRE?4EH ADO
F1 SEAkRCH

FOUND FQU 0 OVLEWR

LA Oo A VALUE

C. P? ,=P'5 40r0 . 5 ?
BE MOOG, IF YES, GO to MflO5

* SHIFT NUMBER THREE PL.ACES tOO MOO 2

OF S kiFT SHIFT OPERAND VALUE
5 PASSIT ELSE PASS AS IS

SHIFT EQU
LA P610 ZFRO RS
M 44,,TF'B' MULTIPLY TO GET I PLACE SHIFT

PASSIT CCU 0
L PS, ZOIRI, LOAD AOOP NVILI
ST 07,Q*R51 PASS 1ACK NVALI
IT 03,AODq12P STORE AOORIP
C R7 -F15' MODO 5 ?
(IF M0659 IF YES* GO TO MfOOS

n nATA2 GO TO nATA2 FOR NEXT OPERANDS

9 FOR winf 5, QFAD NEXT OPFRANn AS REG~ISTER

Mrr Foil S
Q lIIIIP I) INCRFMENT MODS PASS FlArG

C Ertl =F'21 MODS PASS FLAG =2 7
I14TH IF YES, GO TO S14IFT

=IF' 40') flP'ASS FLA(. - A 7
IF "R pF rIF YFs, Gn TO PPFPFG

q', 4 '1P RII Fl. SF Lnlf A0O0 ')VAL?

ST RT(0QI PASS BACK NVAL2
8 1 EAVE ANn lEAVF nOUT NE

W OITINE TO OFrAD LABEL AND NUM4ERICAL DATA

DATA Eau 0
L 94.4191) 'LOAD &0()R OF POSITION
%I 04,AqnPOP STCRE ADOPOP FOR CALL
LA 0300 FLAG REG.ISTER - 0
LA Q 6 1 z LOAD NVAL 0QINfFR
L R 2,81RI) LOADO A000 OPERI
L R? oI LOAD OPEPI
C PP , F'4' OPERI - A
FIE stPcut I F YF GO TO SUJROUT
LA olo1 ELSE ItT FLAG REGISTER

UE SUSPOUTINE VAIRFD 1t) RVTR!EVE NUMERICAt VALUES

51)501) FQIJ
LR P5.'II SAV[IRI DUPING CALL.
CALL VAL RED, I ADOCflP6NUV&L9ERCI3DEIVL SURR FOP NU04FRICAL
toR PI 1 PESTORE 91
L RiIERCCOE LOAD ERCODE

RE 00403 F ES. TO OPRED
C 0 1 I I:Itt ERCODE a
RE ERR INV IF YES, OPERAND NA1

OBPEDLEV 00

UP CI O P3*=Fl'l OESE D-PRN s I
* kNE HE ittop IF NOlT, rO TO NE TO7P

ROUTINE 10 SPLIT LARr.E NUMBERS INIO ITWD BY~TES* L0~l ORDER FIRST

VALCUT Fu)IJ
L. R4,4UAL LNOA WNUVAL

W&LISr E13U #
C P4 F16SI61 NUMVAL tIVER TWO BYTES?
st C U f (fp IF LESS* PRtCEED WITH SPLIT
5 Q .eF 1655361 ELSE MAKE MOO 65K
5 VWLIT LOOP RACK TO3 VAITST5

CUTUP E4'U
S7 R4.NUMVAL STORE NUMVhL
MI NtlmVAL..2,X'00% ZERO UPPER RYTE
L R5 i 41MVAL LOD NUMVAL
L RIID(P6,RTI LOAD PASS BACK ADORQ
sr I O"1 PASS BACK NVAL I

LA R6:1%11)INCREMENT A6
1.A 45,0 tEqO q 5
ST qs.qUMVAI. TEPO NUfAVAL
ST q4fSPACE LOAD NUMBER 1 4 SPACE
I4vC JUMVAL1U lIsPACF$z (,4A 4CG4 nyTE nFl jdumAF
L Rsz.0NUMVAL LOADf 4UMI4AL
L QIlt 0(Q6,0 I LoD &0PASS BACK AfifiR
ST P17.) 14 1 PASS BAC.K NVAL2

L$AVE AMO LEAVE ROOTINE

* tfuAfl S IN'M F yrF C!PrQ ANn'T

NEKIOP rtii

Rl -FVl FIAG REGISTER v3 7
BNF TFIO P IF NOT, GO In TESTOP
LA R6 , 4 IF YES, LOAD NVAL POINTEP

B1 VAI CUT ANn GO TO VA! CUT
TESTnp EQU

L R*,.NIJMVAL LrAD NUMVAL
C R4,-I ml55' hU'4VAL OVER ONE BYTE?
SH FRI ONG ciF YES OPERAND) IS Ton LONG
C Ri=''LAG OGISTER = 2 ?
of OPNtJM2 F ES, GO TO OPNUP42

*PROCESS SECOND DATA OPERAND

OATA2 EOU
L R2,16(RI) LOAD ADOR OPER2
I. Rz,01R2I LOAD OPER2
C P2 -F*Oo OPER? = 0
BE LEI VF ~FYES9LEAVE RCUTINE
LA IE7 ,AC REGISTER TO I
C P3 44 oPER2 4 7
BE SURCUT IF EQUAL, GO TO SUBOUT
LA R3#3 SET FLAT. REGISTER - 3
B SUB8OUT GO TO SUROUT

*LOAD SPCOnND ONE BYTE nPERAND

OPNUM2 EDOLA NUA
L A## NUMyAlLODNMA
L R 11J4RII LOAD AODR NVAL?
ST R4 9t I PASS BACY NVAL2
a * V AND LEAVE ROUTINE

* FRROR I4ANnLtNG ROUTINES

LAIN EQU , SET ERROR CODE - I
a LEAVE AND LEAVE ROUTINE

ERLONG EQU
LA RI7,7 SET ERROR CODE - 2

LEAVE Eat'
L 0 1#12IRIJ LOAD JERCOD RETURN LOOP
St RIOIRI1I RETURN IFRCO)
SCLOSE RETURN

AnoRrp us IF
NUMVAL OS IF
ERCOUE OS IF
SPACE OS IF
REGIST ;)S IF
BLANKS Dc cI R,

* FnIrTFR npIrANO) LISTS

U'. CL4'A I
DC FO''?

DCE FtD'

I Oh)

DC; r'-I*
OC CL'.'
or F,?
oC CL _:
Or F .):
DC CL4N
DC F ,4'
oC CL4'I. I
oc F5'DC CL4'
oc F960
DC Ct 411

11 5T2 EQIJ
OC CL4'RI
Dc F IO)
Or CL4'D
or F 1160
9C EL 414
Dc F'32'
of CL4'SP
DC Fl 481
Dc CL4'PSW
OC F'488
DC CL41Z

LISTI EQU
DC CL4S8
DC CL4VD

Dc F1161
oc CL4'1
END CPERAN

//SYEPLO EXEC ASMFC*PARM&'NODECKLOAD
//AS4.SSL~00I DSN JE11O.UACLqDpISb&Ht
II 00 OSN=SYSI.MACL 1R.D!SP-SHA

//ASM.SYSPRINT DI) DUMMY
I/ASi. SYS;,C ,10 OSN-FCCOISJEC7 ,D!SP.(RCO.PA S
//ASM.SYSIN 00)

AS4ER SPeDUTINE# TITLE VALPED
CALL VAtPED JA0DD'OD,4UMVvERCODU ******

VALP Fr) CSFCT
FXVR N t qRflhT
S EQUR EQUATE REGISTERS
snPFN IRM OPFNINr, CONVENTIONS

REGIN OU 0
LA R1200 ZERO ERROR CODE
ST Rt2.NUMVAL ZEPO NUMVAL
ST RI2*F~fOUE ZERO EXTERNAt EoConlE
St R12,EXI7CDE ZERO EXCODE
T Q1I1.(XVAL ZERO EXVAL

L 02.0101) LCEnAD OR PCSIT ION OF CPFOANDS
t P4,91011 LOA0 ADOR ERCODE

L QI4,lfQ4I LOAD INCOMING. FflCflfE
C 04,m'0O CH4FCK F('R OP A010 PiCOF
IBNP LR1'ST IF NOT 1100, LOArD ONLY ADDO OP
L Q7,roIpi') lfltif POSITION OF nPFRANOS;

101 1ST FlU
I -A offl.0 'rof FKCP0E~SIN roorF

1r14

rL I n P 2 C 'A' FIRST CHAR = A 7
1 L E rt 5 N V IF LOW, INVALID OPERAND
c It o RI C'l CHAP = I ?
FAH NUM-Sf IF HIGHl TEST FnR NUMBER
L A Pq I ELSE LOAD MAX CHAR v 6
a SFTIIP AND ARANCH To SETUP

NU'4rST EQOD
CLI 01P7),COI c 14 A 0
PL EPPINY IF LO; INVALID OPERAND
CLI OIRzI,C' CHAR q 7
SH ERRPINY IF HIGH&DINVALIO OPERAND
LA P9,9 ELSE LCr MAX CHAR a 9

SETUP FQU
qyC LA9NIJMIPIRLANKS FILL SPACE WITH BLANKS
1.A R5,1 SET INCRItEMENT =I
LA 0%90 ZERO R5
LA P4,n ZERO INDEX

INOATA IOU
1 r P50 I21 GET CHARACTER
C PS,=F$644 CHAP ;,ILANK
Ar- DONE IF YES DONE
c RS,=F'l071 CHAR =,7
FIE ONE If YES, DONE

C PS -F'78* CHAR I
BE Xo;!ES1 IF YES, GO TO XPRESI
C 05,1=F1960 CHAR - - I
3 FH XPROERON IF YES; Go TO XPOE5P
ax" 9 XRaES O IF CHAR OVER MAX , Go TO ERLONG
SIC R5,LA4NUM-1?0,41 S~tORE CHAO IN LAONUM
LA R~t~f2) INCREMENT POSITION
a IN IATA GET NEXT CHARXPRESI ECU 0
LA R 1OP SET EXPRESSION CODE-I

XPRtS2 EQ UE OTOON
LA 910,2 SET EXPRESSION CODe - 2

DONE EC U
c RF6 DATA IS LABEL ?
BH NU MB8ERI IF NO ,Gf TO NUMBER
LP P5, RI SAVE &1DURING CALL
c ALL LABOUT, ELARNUMNUMVALERCOOE) Vt
IA Al tP5 RESTO E PI
I. P3,EPCCOE LCAD ERPOR CDDE
C P.) -F'jl ERCODE = 1 7
CE ElphNV INVALID OR NoT FOUND VLAUE

VALFNO ECU
LA P2tj~q2) MOVE POINTER to NEXT OPERAND
L P',E7CD LfOAD EXPRES CODE
. 0 7 P=r 10 CODE = (1 7
of EXPrST IF fES, Go To FXPTST
r. Rl,=F'1' CCOE - I7
[INE. S(j AF xP if: NoT. GO TO SU8TI;ACT

ADDEXIS P. EU
L RTFXVAL LOAD EXPRESSION VALUE

A R1, NIIMVtL ADO NI)MVAL
;T a? NtJMVAL STORE RESULT IN NuNvaL
Ck FX6TST GO TO EXPTST

SUREX P EQ11
07~,FxVAL LOAD EXVAL

F , Af,(IM4VAL SUB!' ACT NI)MVAL

It RTNUMVAI. STORE RESULT IN NUMVAL
EXPTST FQI $

C RIO,'F'0 EXPRESSION CODE - 0
RE VAL (fJT IF YES, GO HO VALOUT
L P?.NUMVAL ELSE, LnAD NUMVAL
ST RT EFXVAL STOPE IN 'XVAL
ST Qt6 EXCO0E STORE EXPRE-SS CODE IN EXCOof
R LRLTST GO TO LeLTST

VAt OUt FOU
L R6.NUMVAL LOAD NUMVAL
L RfT41RI LOAD ADOR NUMVAL
ST P6 DIP? PASS BACK NUMVAL
9 LEAVE AND LEAVF ROUTINE

NUMBER EQ11 0
S R2 -Ft1

°
POINT R2 TO LAST VALID CHAR

CLI 014-Zj,C'H
t

LAST CHAR - H ?
FE HE(IN IF YES, GO TO HEXIN
CLI OIRZh)C'lO LiAST CHAR "-0 7
BE OCTI1 IF YES, GO TO OCTIN
CLI OCR2 #C* LAST CHAR - 8
9E aININ IF YES, GO TO BININ

DEC IN FOIl 0
LA RO10 LOAD MULTIPLIERs C0NVRT

OCTIN E90 ,
LA Q1,8 LOAD MULTIPLIER
S R4t=rl POINT LIMIT AT LAST DIGIT
B CONVRT GO TO CONVRT

BININ EU 0
LA R7,2 LOAD M4ULTIPLIRR
S R4p,=F"I" POINT LIMIT AT LAST DIGIT

CfINVRT ECU
LA R9,0 ZERO VALUE
LA PsO ZERO POINTER INDEX
LA R8.0 ZERO R3
LA R6, lI LOAD MASK FOR CHAR TO BINARY

CTLOOP EOU 0
MR RRR7 MULTIPLY RY BASE
IC RILABNUMIRS) LOAD NEXT CHAR
NP ' ,R6 CONVERT TO BINARY
AR PqR3 ADO TO SUM
LA R5,I(RSI INCREMENT POINTER
9CT 04,CTLOCP OD LOOP BY NUMRFR OF DIGITS
,I R9,NUMVAL STORE VALUE IN NUMV&IL
LA R7, 1IRI RESTORE VALUE OF R,.
B VALFND Cr TO VALFND

HEXIN Fj~U 0
LA R,16 LOAD MULTIPLIER
S R4,=FI' POINT LIMIT AT LAST.DIGIT
LA 05,0 ZERO INDFX POINTER
LA p',O ZERO R9
LA P.0 ZERO VALUE
)T :k.,CHAPIN ZERO CHARIN

WF vCVT 1OU I
MR ono T MULTIPLY BY BASE
I A R1 0 ZEReO LIST INEX
,A il,0o ZERO Q11
I A P6, 16 SET LOOP C.OtJNTFq FOR t Irt
I. 11 ,LA lNUIRP LOAD rHAR
Tr 0Il,(HAQIN ,Trrf CuCAR

1 C. ~~INSERTCHRFML
I: CHAR CA IRC N ~T
CE HEXCAI C04PARE CHAR ANn 1LIST ENTRY

RE H~VALIF EQU'IL, GO TO 4fxVlk.
LA P3#1(031 INCPE4EN R3

11r8 ; DL O GO BACK TO 101001' ON COUNT

HEWVAL FQU FR NV IF 40t FI2UNn, INVALID CHAR
AR QfqO, ADO TO Sum
CA p 9,jIps) INCREMENTPOINTER INDEX
OCT R491'FXCYT BRANCH ON NUMRER OF DIGITS
ST RqtNUMVAL STORE VALUE IN NUMVAL
LA P29,1plR RESTORE VALUE C'F R2
8 VALFNO GO TO VALFNn

FRO I NV ECU 0
LA RI, SET ERCODE =I

A LEAVE AND LEAVE ROUTINE
MOLNG ECU #

tA RIz.z SET ERCOOE
LEAVE FOU

I RII.BliR LOAD AOOR OF ERCUDE
ST RI7,O(aII PASS RACK ERCOOF

END EQU
SCLUI SE

LABNUM rl S 3F
NUMVAL us IF
ERCOOF OS IF
EXVAI C S IF
EXCOOE DS IF
CHARIN OS IF
HXIST DC CLI OnI21456?R9ABClEFl
FNKS of: CL16'

FND VALRED

I

